Home
Class 12
MATHS
If y=a^x^a^x^((((ddotoo)))) , prove that...

If `y=a^x^a^x^((((ddotoo))))` , prove that `(dy)/(dx)=(y^2logy)/(x(1-ylogx. logy))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)])

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y=a^(x^(a^(x^......)^oo))), \ p rov et h a t \ (dy)/(dx)=(y^2logy)/(x(1-ylogxdotlogy)

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

x(dy)/(dx)=y(logy-logx+1)

If (x^y)(y^x)=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))