Home
Class 11
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `x^(3) + x + 1 = 0`, then the value of `alpha^(3) + beta^(3) + gamma^(3)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(2) + x + 3)=0 , then the value of alpha^(3) + beta^(3) + gamma^(3) is:

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma are the roots of the equation x^3 - 3x + 11 =0 , then alpha + beta + gamma is ………….

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))