Home
Class 12
MATHS
sin((pi)/(2)+2x) का समाकलन कीजिये -...

`sin((pi)/(2)+2x)` का समाकलन कीजिये -

Promotional Banner

Similar Questions

Explore conceptually related problems

sin x=sin(pi/2)

[sin ((pi) / (2) -x) + sin (pi-x)] ^ (2) + [(cos ((3 pi) / (2) -x) + cos (2 pi-x)] ^ (2) =

(sin (pi + x) cos ((pi) / (2) + x) tan ((3 pi) / (2) -x) cot (2 pi-x)) / (sin (2 pi-x) cos (2 pi + x) csc (-x) sin ((3 pi) / (2) -x)) = 1

int_(0)^( pi)(x sin2x sin((pi)/(2)cos x))/(2x-pi)dx is equal to

खण्डशः समाकलन का उपयोग

खण्डशः समाकलन का उपयोग

खण्डशः समाकलन का उपयोग

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]

2 sin^2(pi/2 cos^2 x) = 1 - cos(pi sin 2x) . if