Home
Class 11
MATHS
If the points(a^3/(a-1),(a^2-3)/(a-1)), ...

If the points`(a^3/(a-1),(a^2-3)/(a-1))`, `(b^3/(b-1),(b^2-3)/(b-1))`, `(c^3/(c-1),(c^2-3)/(c-1))` are collinear for 3 distinct values `a,b,c` and `a!=1, b!=1, c!=1`, then find the value of `abc-(ab+bc+ca)+3(a+b+c)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points, ((a^(3))/(a-1),(a^(2)-3)/(a-1)), ((b^(3))/(b-1),(b^(2)-3)/(b-1)) and ((c^(3))/(c-1)(c^(2)-3)/(c-1)) are collinear for three distinct values a, b, c and a ne 1, b ne 1 and c ne 1 , then show that abc-(bc+ca+ab)+3(a+b+c)=0

If a:b=3:1 and b:c=5:1 , then find the value of ((a^3)/(15b^2c))^3

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1)),((b^(3))/(b-1),(b^(3)-3)/(b-1)) and ((c^(3))/(c-1),(c^(3)-3)/(c-1)) where a,b,c are different from 1 lie on the line lx+my+n=0a+b+c=(m)/(l)ab+bc+ca+(n)/(l)=0abc=((3m+n))/(l)abc-(bc+ca+ab)+3(a+b+c)=0

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a+b+c=6 and ab+bc+ca=1, then evaluate a^3+b^3+c^3-3abc

If a+b+c=2, ab+bc+ca=-1 and abc=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a = 1 , b = 2 , c = 3 , then find then value of (2a^(2)+2b^(2)+2c^(2)-ab-bc-ca)/(a^(3)+b^(3)+c^(3)-3abc)

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0