Home
Class 12
MATHS
Vectors drawn the origin O to the points...

Vectors drawn the origin `O` to the points `A , Ba n d C` are respectively ` vec a , vec ba n d vec4a- vec3bdot` find ` vec A Ca n d vec B Cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Vectors drawn the origin O to the points A , B and C are respectively vec a , vec b and vec4a- vec3bdot find vec A C and vec B Cdot

Vectors drawn the origin O to the points A , B and C are respectively vec a , vec b and vec4a- vec3bdot find vec A C and vec B Cdot

Vectors drawn the origin O to the points A , B and C are respectively vec a , vec b and vec4a- vec3bdot find vec (AC) and vec (BC)

A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD C respectively, then express vec A La n d vec A M in terms of vec A Ba n d vec A D . Also, prove that vec A L+ vec A M=3/2 vec A Cdot

A B C D is a parallelogram. If La n dM are the mid-points of B Ca n dD C respectively, then express vec A La n d vec A M in terms of vec A Ba n d vec A D . Also, prove that vec A L+ vec A M=3/2 vec A Cdot

Prove that the points A ,Ba n d C with position vectors vec a , vec ba n d vec c respectively are collinear if and only if vec axx vec b+ vec bxx vec c+ vec cxx vec a= vec0dot

If vec a ,\ vec b ,\ vec c are position vectors o the point A ,\ B ,\ a n d\ C respectively, write the value of vec A B+ vec B C+ vec A Cdot

A ,B ,Ca n dD have position vectors vec a , vec b , vec ca n d vec d , respectively, such that vec a- vec b=2( vec d- vec c)dot Then a. A Ba n dC D bisect each other b. B Da n dA C bisect each other c. A Ba n dC D trisect each other d. B Da n dA C trisect each other

A ,B ,Ca n dD have position vectors vec a , vec b , vec ca n d vec d , respectively, such that vec a- vec b=2( vec d- vec c)dot Then a. A Ba n dC D bisect each other b. B Da n dA C bisect each other c. A Ba n dC D trisect each other d. B Da n dA C trisect each other

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vec d ⋅ vec a = vec d ⋅ vec b = vec d ⋅ vec c a n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these