Home
Class 12
MATHS
If ye^(y)=x, prove that, (dy)/(dx)=(y)/(...

If `ye^(y)=x`, prove that, `(dy)/(dx)=(y)/(x(1+y))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if e^(-y)y=x then prove that (dy)/(dx)=(y)/(x(1-y))

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy))

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x//y), prove that (dy)/(dx) = (x-y)/(xlogx)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx) .