Home
Class 10
MATHS
" If "A=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" ...

" If "A=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" then "A" is "longrightarrow" matrix "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

Express the matrix [[2,-2,-4],[-1,3,4],[1,-2,-3]] as the sum of a symmetric and a skew symmetric matrices.

Express A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix B=[[2,-2,-4],[-1, 3,4],[ 1,-2,-3]] as the sum of a symmetric and skew symmetric matrix.

" If matrix "A=[[1,1,3],[1,3,-3],[-2,-4,-4]]" then find "A^(-1)