Home
Class 12
MATHS
Let f(x)=5-[x-2] g(x)=[x+1]+3 If max...

Let `f(x)=5-[x-2]`
`g(x)=[x+1]+3`
If maximum value of `f(x)` is `alpha`
`&` minimum value of `f(x)` is `beta`
then `underset(xrarr(alphabeta))((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha & minimum value of f(x) is beta then underset(xrarr(alpha-beta))lim ((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is (A) -1/2 (B)1/2 (C)3/2 (D)-3/2

Let f(x)=5-[x-2]g(x)=[x+1]+3 If maximum value of f(x) is alpha& minimum value of f(x) is beta then lim_(x rarr(alpha-beta))((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x) attains maximum value at alpha ang g(x) attains minimum value of beta , then underset(xto-alpha beta)lim((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to (a) -1/2 (b) -3/2 (c) 1/2 (d) 3/2

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n artains maximum value at alpha ang g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n attains maximum value at alpha and g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

f(x)=x+4 g(x)=6-x^(2) What is the maximum value of g(f(x)) ?

Find the minimum value of f(X)=x^(2)-5x+6 .

The minimum value of f(x)=|3-x|+|2+x|+|5-x| is

If f(x)=|x-2|+x^(2)-1 and g(x)+f(x)=x^(2)+3 , find the maximum value of g(x) .

f(x)=x^3-6x^2-19 x+84 ,\ g(x)=x-7 find the value of f(x)-g(x).