Home
Class 9
MATHS
If log(a+b+c) = log a + log b + log c, t...

If `log(a+b+c) = log a + log b + log c`, then prove that
`log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .

if log((a+b)/(2))=(1)/(2)(log a+log b), prove that a=b

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^2+b^2=23ab ,then prove that log((a+b)/5)=1/2(log a+log b)

If a^(2)+b^(2)-c^(2)=0, then (1)/(log_(c+a)b)+(1)/(log_(c-a)b)

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^2+b^2 =7ab, then prove that "log"((a+b)/3)=1/2("log"a+"log"b)