Home
Class 12
MATHS
Prove that : sum(m=1)^n\ \ \ tan^(-1)((2...

Prove that : `sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these