The relaxation time `tau` is nearly independent of applied electric field `E` whereas it changes significantly with temperature `T`. First fact is (in part) responsible for Ohm's law whereas the second fact leads to variation of `p` with temperature. Elaborate why?
The relaxation time `tau` is nearly independent of applied electric field `E` whereas it changes significantly with temperature `T`. First fact is (in part) responsible for Ohm's law whereas the second fact leads to variation of `p` with temperature. Elaborate why?
Similar Questions
Explore conceptually related problems
The relaxation time tau Is nearly independent of applied E field whereas it changes significantly with temperature T. First fact is (in part) responsible for Ohnl's law whereas the second fact leads to variation of p with temperature. Elaborate why ?
The relaxation time tau is nearly independent of applied E field whereas it changes significantly with temperature T. first fact is responsible for Ohm's law whereas the second fact leads to variation of rho with temperature. Elaborate why?
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. When CaCO_(3) is heated to a high temperature , it undergoes decomposition into CaO and CO_(2) whereas it is quite stable at room temperature . The most likely explanation of it, is
Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. When CaCO_(3) is heated to a high temperature , it undergoes decomposition into CaO and CO_(2) whereas it is quite stable at room temperature . The most likely explanation of it, is
For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. DeltaG_(P.T.)lt0.Delta_(P.T.)=0 implies the equilibrium condition and DeltaG_(P.T.)gt0 corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as : DeltaG_(P.T.)=DeltaH-TDeltaS ......(i) The magnitude of Delta H does not change much with the change in temperature but the entropy factor TDeltaS changes appreciably. Thus, spontaneity of a process depends very much on temperature. For edothermic proces, both DeltaH "and " DeltaS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor TDeltaS will be small and may be less than Delta H, DeltaG will have positive value indicating the non-spontaneity of the process. On raising temperature, the factor TDeltaS increases appreciably and when it exceeds DeltaH,DeltaG would become negative and the process would be spontaneous. For an exothermic process, both DeltaH " and " DeltaS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when TDeltaSgt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore TDeltaSlt DeltaH,DeltaG becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. When CaCO_(3) is heated to a high temperature, it undergoes decomposition into CaO and CO_(2) whereas it is quite stable at room temperature. The most likely explanation of it, is:
Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value of zero as their temperature is lowered below a critical temperature T_(C) (0) . An interesting property of super conductors is that their critical temperature becomes smaller than T_(C) (0) if they are placed in a magnetic field, i.e., the critical temperature T_(C) (B) is a function of the magnetic field strength B. The dependence of T_(C) (B) on B is shown in the figure. . In the graphs below, the resistance R of a superconductor is shown as a function of its temperature T for two different magnetic fields B_1 (solid line) and B_2 (dashed line). If B_2 is larget than B_1 which of the following graphs shows the correct variation of R with T in these fields?
Recommended Questions
- The relaxation time tau is nearly independent of applied electric fiel...
Text Solution
|
- The relaxation time tau is nearly independent of applied electric fiel...
Text Solution
|
- If temperature is increased, the dielectric constant of a polar dielec...
Text Solution
|
- Which graph correctly represents variation between relaxation time (t)...
Text Solution
|
- ओम के नियम में किसका ताप अचर रहता है ?
Text Solution
|
- ओम के नियम में चालक का ताप क्यों अचर रहता है ?
Text Solution
|
- The expression for Ohm's law in terms of electric field E and curren...
Text Solution
|
- Why is Li2CO3 decomposed at a lower temperature whereas Na2CO3 at high...
Text Solution
|
- Why is Li2CO3 decomposed at a lower temperature whereas Na2CO3 at high...
Text Solution
|