Home
Class 14
MATHS
" प्रश्न "35.sin^(4)theta-cos^(4)theta=2...

" प्रश्न "35.sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

If : sin^(4)theta+cos^(4)theta+sin^(2)theta*cos^(2)theta=1-u^(2), "then" : u=

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

If tan theta=(3)/(4), then (4sin^(2)theta-2cos^(2)theta)/(4sin^(2)theta+3cos^(2)theta)

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1