Home
Class 11
MATHS
If x satisfies the equation x^(2)(int(0)...

If `x` satisfies the equation `x^(2)(int_(0)^( pi/2)(2sin t+3cos t)dt)-x(int_(-3)^(3)(t^(2)sin2t)/(t^(2)+1))-2=0` ,then the value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2 pi)[sin t]dt

If [int_0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int_- 3^3(t^2sin2t)/(t^2+1)dt]x-2=0 (0 < alpha < pi) then the value of x is

If [int_0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int_- 3^3(t^2sin2t)/(t^2+1)dt]x-2=0 (0 < alpha < pi) then the value of x is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

If int_(sin x)^(1) t^2 f(t) dt = 1 - sin x , then the value of f(1/(sqrt3)) is :

A function f(x) satisfies f(x)=sin x+int_(0)^(x)f'(t)(2sin t-sin^(2)t)dt is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

In the equation int(dt)/(sqrt(2at-t^(2)))=a^(x) sin^(-1)[t/a-1] . The value of x is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is