Home
Class 12
MATHS
2tan^(1)(1)/(3)+tan^(-1)(1)/(7)=...

2tan^(1)(1)/(3)+tan^(-1)(1)/(7)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

prove that 2(tan^(-1)1)/(3)+(tan^(-1)1)/(7)=(pi)/(4)

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

prove that: 2 tan ^(-1)x =(1)/(3) tan^(-1).(1)/( 7) = (pi)/(4)

The value of "tan"^(-1)(1)/(2)+"tan"^(-1)(1)/(3)+"tan"^(-1)(7)/(8) is