Home
Class 11
MATHS
The value of the determinant Delta = |(s...

The value of the determinant `Delta = |(sin 2 alpha,sin (alpha + beta),sin (alpha + gamma)),(sin (beta + gamma),sin 2 beta,sin (gamma + beta)),((sin gamma + alpha),sin (gamma + beta),sin 2 gamma)|`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

|(0, sin alpha, sin beta),(sin alpha, 0, sin gamma),(sin beta, sin gamma, 0)|=|(1, sin alpha, sin beta),(sin alpha, 1, sin gamma),(sin beta, sin gamma, 1)| , then

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

|(sin alpha, cos alpha, sin (alpha+delta)),(sin beta, cos beta, sin(beta+delta)),(sin gamma, cos gamma, sin (gamma+delta))|=

sin 2 alpha + sin 2 beta + sin 2 gamma - sin2(alpha + beta + gamma )=

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If x = sin (alpha - beta) sin (gamma - delta) y = sin (beta - gamma) sin (alpha - delta ) and z = sin (gamma - alpha ) sin (beta - delta ) then

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0