Home
Class 12
MATHS
Letf:[-oo,0]->[1,oo) be defined as f(x) ...

Let`f:[-oo,0]->[1,oo)` be defined as `f(x) = (1+sqrt(-x))-(sqrt(-x) -x)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[1,oo)rarr[2,oo) be defined by f(x)=x+(1)/(x) . If f(n_(1))=sqrt(5) then 2((n_(1))/(2)-sin18^(@))

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

Let f:R->[1,oo) be defined as f(x)=log_10(sqrt(3x^2-4x+k+1)+10) If f(x) is surjective then k =

Let f:R->[1,oo) be defined as f(x)=log_10(sqrt(3x^2-4x+k+1)+10) If f(x) is surjective then k =

Let f:R->[1,oo) be defined as f(x)=log_10(sqrt(3x^2-4x+k+1)+10) If f(x) is surjective then k =

Let f:R->[1,oo) be defined as f(x)=log_10(sqrt(3x^2-4x+k+1)+10) If f(x) is surjective then k =

If f:[0,oo)->R and g: R->R be defined as f(x)=sqrt(x) and g(x)=-x^2-1, then find gof and fog

Let f:R rarr[1,oo) be defined as f(x)=log_(10)(sqrt(3x^(2)-4x+k+1)+10) If f(x) is surjective then k=