Home
Class 11
MATHS
If a, b, c in R and (a + c)^2 < b^2 then...

If `a, b, c in R` and `(a + c)^2 < b^2` then the equation , `ax^2+ bx+ c = 0` has a) real roots b) at least one root in (-1, 1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R and a^(2)+b^(2)+c^(2)=1, then the possible values of [ab+bc+ca] are

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

If one root of z^2 + (a + i)z+ b +ic =0 is real, where a, b, c in R , then c^2 + b-ac=

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

If one root of z^(2)+(a+i)z+b+ic=0 is real,where a,b,c in R, then c^(2)+b-ac=

If In (a+c),ln(a-c),ln(a-2b+c) are in AdotPdot, then a , b , c ,a r einAdotPdot (b) a^2,b^2,c^2a r einAdotPdot a , b , c are in GdotPdot (d) a , b , c are in HdotPdot