Home
Class 11
MATHS
[" 38.The equation "x=(e^(t)+e^(-t))/(2)...

[" 38.The equation "x=(e^(t)+e^(-t))/(2);y=(e^(t)-e^(-t))/(2);t in R],[" represents "],[[" (a) An ellipse "," (b) A parabola "],[" (c) A hyperbola "," (d) A circle "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The equations x=(e^t+e^(-t))/2,y=(e^(t)-e^(-t))/2, t inR represent :

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2 , then dy/dx=

Find (dy)/(dx),quad when x=(e^(t)+e^(-t))/(2) and y(e^(t)-e^(-t))/(2)

The locus of point ((e^(t)+e^(-t))/(2),(e^(t)-e^(-t))/(2)) is a hyperbola with eccentricity

int(2e^(t))/(e^(3t)-6e^(2t)+11e^(t)-6)dt

The locus of the point ( (e^(t) +e^(-t))/( 2),(e^t-e^(-t))/(2)) is a hyperbola of eccentricity