Home
Class 12
MATHS
Let A = [(3,-1),(0,2)] . Suppose A satis...

Let A = `[(3,-1),(0,2)]` . Suppose A satisfies the equation `x^(2)+ax+b=0` for some real numbers a and b . Let `alpha , beta ` be the roots of `t^(2)+at` +b=0 then
`(1)/(alpha^(2)-3alpha+4)+(1)/(beta^(2)-3alpha+4)`= ________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the logic presented in the video transcript, while ensuring clarity in each step. ### Step 1: Identify the matrix A Given the matrix: \[ A = \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} \] ### Step 2: Find the characteristic polynomial The characteristic polynomial of a matrix \( A \) is given by: \[ \text{det}(A - \lambda I) = 0 \] where \( I \) is the identity matrix. Calculating \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 3 - \lambda & -1 \\ 0 & 2 - \lambda \end{pmatrix} \] The determinant is: \[ \text{det}(A - \lambda I) = (3 - \lambda)(2 - \lambda) - (0)(-1) = (3 - \lambda)(2 - \lambda) \] Setting the determinant to zero: \[ (3 - \lambda)(2 - \lambda) = 0 \] This gives us the eigenvalues: \[ \lambda_1 = 3, \quad \lambda_2 = 2 \] ### Step 3: Form the quadratic equation We know that the eigenvalues satisfy the equation: \[ x^2 + ax + b = 0 \] From the eigenvalues, we can find \( a \) and \( b \): - The sum of the roots (eigenvalues) is \( 3 + 2 = 5 \), so \( a = -5 \). - The product of the roots is \( 3 \cdot 2 = 6 \), so \( b = 6 \). Thus, the quadratic equation is: \[ t^2 - 5t + 6 = 0 \] ### Step 4: Find the roots Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting \( a = 1, b = -5, c = 6 \): \[ t = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 6}}{2 \cdot 1} \] \[ t = \frac{5 \pm \sqrt{25 - 24}}{2} \] \[ t = \frac{5 \pm 1}{2} \] Thus, the roots are: \[ \alpha = 3, \quad \beta = 2 \] ### Step 5: Evaluate the expression We need to evaluate: \[ \frac{1}{\alpha^2 - 3\alpha + 4} + \frac{1}{\beta^2 - 3\beta + 4} \] Calculating for \( \alpha = 3 \): \[ \alpha^2 - 3\alpha + 4 = 3^2 - 3 \cdot 3 + 4 = 9 - 9 + 4 = 4 \] Thus, \[ \frac{1}{\alpha^2 - 3\alpha + 4} = \frac{1}{4} \] Calculating for \( \beta = 2 \): \[ \beta^2 - 3\beta + 4 = 2^2 - 3 \cdot 2 + 4 = 4 - 6 + 4 = 2 \] Thus, \[ \frac{1}{\beta^2 - 3\beta + 4} = \frac{1}{2} \] ### Step 6: Combine the results Now, we combine the two results: \[ \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \] ### Final Answer The final answer is: \[ \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

Let alpha and beta be two real roots of the equation 5 cot ^(2) x- 3 cot x-1=0, then cot ^(2)(alpha + beta)=

If alpha,beta are the roots of the quadratic equation 4x^(2)-4x+1=0 then alpha^(3)+beta^(3)=

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))
  1. Let A = [(7,5),(4,8)] ,B= [(2,3),(3,5)] and C= [(5,-3),(-3,2)] then su...

    Text Solution

    |

  2. If x =alpha, y=beta, z = gamma is a solution of the system of equation...

    Text Solution

    |

  3. Suppose p,q,r in R and and pqr = 2.5 . Let A = [(p,q,r),(r,p,q),(q,r,...

    Text Solution

    |

  4. Suppose A and B are two 3xx3 non singular matrices such that tr (AB) =...

    Text Solution

    |

  5. Suppose k is a root of x^(2)-6.1x+5.1=0 such that A=[(1,2,1),(3,2,3),(...

    Text Solution

    |

  6. Let A = ((2.1,2.7,1.3),(3.1,3.2,1.7),(2.1,2.5,2.9)). The sum of values...

    Text Solution

    |

  7. If the system of linear equations ax+(a+1)y+(a-1)z=0 (a-1)x+(a+2)y...

    Text Solution

    |

  8. Let A = [(3,-1),(0,2)] . Suppose A satisfies the equation x^(2)+ax+b=0...

    Text Solution

    |

  9. Let A = [(5.1,-3.1,0),(-3.1,5.1,0),(0,0,2.2)] X be a non zero 3xx1 mat...

    Text Solution

    |

  10. A solution set of the equations x+2y+z=1, x+3y+4z=k, x+5y+10z=k^(2) is

    Text Solution

    |

  11. Let alpha=(2kpi)/(2025),beta=(2mpi)/(2026)"and " gamma=(2kpi)/(2027) ...

    Text Solution

    |

  12. Let A = ((1,2,3),(0,0,0),(3,2,1)) and A^(n)=((a(n),b(n),c(n)),(0,0,0),...

    Text Solution

    |

  13. Let A and B be two 3xx3 real matrices such that AB ne BA AB-B^(2)...

    Text Solution

    |

  14. Let A and B be two 3xx3 matrices with integer entries . If 6AB +2A+3B=...

    Text Solution

    |

  15. Let A = ((1,1,3),(5,2,6),(-2,-1,-3)) and let n be the smallest value o...

    Text Solution

    |

  16. Suppose a,b,c in R - {0} and a+b+c =0 Let alpha =(1)/(5) (a^(5)+b^(5)+...

    Text Solution

    |

  17. Let m = the number of values of a for which the system of equations ...

    Text Solution

    |

  18. If A = [(2,52,152),(4 , 106,358),(6,162,620)] then det (adj ((1)/(2) A...

    Text Solution

    |