Home
Class 12
MATHS
Let A = ((1,1,3),(5,2,6),(-2,-1,-3)) and...

Let A = `((1,1,3),(5,2,6),(-2,-1,-3))` and let n be the smallest value of n `in `N such that `A^(n) = O_(3)` then det `(I_(3)+A+A^(2)+ cdots+ A^(n-1))` is equal to _____ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the smallest natural number \( n \) such that \( A^n = O_3 \) (the null matrix of order \( 3 \times 3 \)). Then, we will calculate the determinant of the matrix \( I_3 + A + A^2 + \cdots + A^{n-1} \). ### Step 1: Calculate \( A^2 \) Given the matrix: \[ A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] We calculate \( A^2 = A \cdot A \). \[ A^2 = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row: - \( (1 \cdot 1 + 1 \cdot 5 + 3 \cdot -2) = 1 + 5 - 6 = 0 \) - \( (1 \cdot 1 + 1 \cdot 2 + 3 \cdot -1) = 1 + 2 - 3 = 0 \) - \( (1 \cdot 3 + 1 \cdot 6 + 3 \cdot -3) = 3 + 6 - 9 = 0 \) - Second row: - \( (5 \cdot 1 + 2 \cdot 5 + 6 \cdot -2) = 5 + 10 - 12 = 3 \) - \( (5 \cdot 1 + 2 \cdot 2 + 6 \cdot -1) = 5 + 4 - 6 = 3 \) - \( (5 \cdot 3 + 2 \cdot 6 + 6 \cdot -3) = 15 + 12 - 18 = 9 \) - Third row: - \( (-2 \cdot 1 + -1 \cdot 5 + -3 \cdot -2) = -2 - 5 + 6 = -1 \) - \( (-2 \cdot 1 + -1 \cdot 2 + -3 \cdot -1) = -2 - 2 + 3 = -1 \) - \( (-2 \cdot 3 + -1 \cdot 6 + -3 \cdot -3) = -6 - 6 + 9 = -3 \) Thus, we have: \[ A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \] Calculating each element of \( A^3 \): - First row: - All elements will be \( 0 \) since the first row of \( A^2 \) is all zeros. - Second row: - \( (3 \cdot 1 + 3 \cdot 5 + 9 \cdot -2) = 3 + 15 - 18 = 0 \) - \( (3 \cdot 1 + 3 \cdot 2 + 9 \cdot -1) = 3 + 6 - 9 = 0 \) - \( (3 \cdot 3 + 3 \cdot 6 + 9 \cdot -3) = 9 + 18 - 27 = 0 \) - Third row: - \( (-1 \cdot 1 + -1 \cdot 5 + -3 \cdot -2) = -1 - 5 + 6 = 0 \) - \( (-1 \cdot 1 + -1 \cdot 2 + -3 \cdot -1) = -1 - 2 + 3 = 0 \) - \( (-1 \cdot 3 + -1 \cdot 6 + -3 \cdot -3) = -3 - 6 + 9 = 0 \) Thus, we have: \[ A^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_3 \] ### Step 3: Determine \( n \) Since \( A^3 = O_3 \), the smallest \( n \) such that \( A^n = O_3 \) is \( n = 3 \). ### Step 4: Calculate \( I_3 + A + A^2 \) Now we need to calculate the determinant of: \[ I_3 + A + A^2 \] Where: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Adding \( I_3 + A + A^2 \): \[ I_3 + A + A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \] Calculating the sum: \[ = \begin{pmatrix} 1 + 1 + 0 & 0 + 1 + 0 & 0 + 3 + 0 \\ 0 + 5 + 3 & 1 + 2 + 3 & 0 + 6 + 9 \\ 0 - 2 - 1 & 0 - 1 - 1 & 1 - 3 - 3 \end{pmatrix} \] \[ = \begin{pmatrix} 2 & 1 & 3 \\ 8 & 6 & 15 \\ -3 & -2 & -5 \end{pmatrix} \] ### Step 5: Calculate the Determinant Now we calculate the determinant of: \[ \begin{pmatrix} 2 & 1 & 3 \\ 8 & 6 & 15 \\ -3 & -2 & -5 \end{pmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Calculating: \[ = 2(6 \cdot -5 - 15 \cdot -2) - 1(8 \cdot -5 - 15 \cdot -3) + 3(8 \cdot -2 - 6 \cdot -3) \] \[ = 2(-30 + 30) - 1(-40 + 45) + 3(-16 + 18) \] \[ = 2(0) - 1(5) + 3(2) \] \[ = 0 - 5 + 6 = 1 \] ### Final Answer The value of \( \text{det}(I_3 + A + A^2) \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept - based) (Single Correct Answer Type Questions)|10 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( LEVEL -1) (Single Correct Answer Type Questions)|43 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Let s_(n)=1+(1)/(3)+(1)/(3^(2))+…+(1)/(3^(n-1)) . The least value of n in N such that (3)/(2) -S_(n) lt (1)/(400) is

The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

If ""^(2n+1)P_(n-1) : ""^(2n-1)P_(n) =3 :5 the possible value of n will be :

If A,B and C are n xx n matrices and det(A)=2,det(B)=3 and det(C)=5 then the value of the det (A^(2)BC^(-1)) is equal to

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.

Let {a _(n)} _( n -1) ^(oo) be a sequene such that a _(1) = 1, a _(2) = 1 and a _( n+2) = 2 a _( n +1) + a _(n) for all n ge 1. Then the value of 47 sum _( n -1) ^(oo) ( a _(n))/( 2 ^( 3n)) is equal to ____________.

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))
  1. Let A = [(7,5),(4,8)] ,B= [(2,3),(3,5)] and C= [(5,-3),(-3,2)] then su...

    Text Solution

    |

  2. If x =alpha, y=beta, z = gamma is a solution of the system of equation...

    Text Solution

    |

  3. Suppose p,q,r in R and and pqr = 2.5 . Let A = [(p,q,r),(r,p,q),(q,r,...

    Text Solution

    |

  4. Suppose A and B are two 3xx3 non singular matrices such that tr (AB) =...

    Text Solution

    |

  5. Suppose k is a root of x^(2)-6.1x+5.1=0 such that A=[(1,2,1),(3,2,3),(...

    Text Solution

    |

  6. Let A = ((2.1,2.7,1.3),(3.1,3.2,1.7),(2.1,2.5,2.9)). The sum of values...

    Text Solution

    |

  7. If the system of linear equations ax+(a+1)y+(a-1)z=0 (a-1)x+(a+2)y...

    Text Solution

    |

  8. Let A = [(3,-1),(0,2)] . Suppose A satisfies the equation x^(2)+ax+b=0...

    Text Solution

    |

  9. Let A = [(5.1,-3.1,0),(-3.1,5.1,0),(0,0,2.2)] X be a non zero 3xx1 mat...

    Text Solution

    |

  10. A solution set of the equations x+2y+z=1, x+3y+4z=k, x+5y+10z=k^(2) is

    Text Solution

    |

  11. Let alpha=(2kpi)/(2025),beta=(2mpi)/(2026)"and " gamma=(2kpi)/(2027) ...

    Text Solution

    |

  12. Let A = ((1,2,3),(0,0,0),(3,2,1)) and A^(n)=((a(n),b(n),c(n)),(0,0,0),...

    Text Solution

    |

  13. Let A and B be two 3xx3 real matrices such that AB ne BA AB-B^(2)...

    Text Solution

    |

  14. Let A and B be two 3xx3 matrices with integer entries . If 6AB +2A+3B=...

    Text Solution

    |

  15. Let A = ((1,1,3),(5,2,6),(-2,-1,-3)) and let n be the smallest value o...

    Text Solution

    |

  16. Suppose a,b,c in R - {0} and a+b+c =0 Let alpha =(1)/(5) (a^(5)+b^(5)+...

    Text Solution

    |

  17. Let m = the number of values of a for which the system of equations ...

    Text Solution

    |

  18. If A = [(2,52,152),(4 , 106,358),(6,162,620)] then det (adj ((1)/(2) A...

    Text Solution

    |