Home
Class 12
MATHS
Let A =[(1,1,0),(0,1,0),(0,0,1)] and let...

Let A =`[(1,1,0),(0,1,0),(0,0,1)]` and let I denote the `3xx3` identity matrix . Then `2A^(2) -A^(3)` =

A

A+I

B

A-I

C

I-A

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \(2A^2 - A^3\) where \(A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\). ### Step 1: Calculate \(A^2\) We start by calculating \(A^2\) which is \(A \times A\). \[ A^2 = A \times A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \(1 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 1\) - First row, second column: \(1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 2\) - First row, third column: \(1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0\) - Second row, first column: \(0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0\) - Second row, second column: \(0 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 1\) - Second row, third column: \(0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0\) - Third row, first column: \(0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0\) - Third row, second column: \(0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 0\) - Third row, third column: \(0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1\) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \(A^3\) Next, we calculate \(A^3\) which is \(A^2 \times A\). \[ A^3 = A^2 \times A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \(1 \cdot 1 + 2 \cdot 0 + 0 \cdot 0 = 1\) - First row, second column: \(1 \cdot 1 + 2 \cdot 1 + 0 \cdot 0 = 3\) - First row, third column: \(1 \cdot 0 + 2 \cdot 0 + 0 \cdot 1 = 0\) - Second row, first column: \(0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 = 0\) - Second row, second column: \(0 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 1\) - Second row, third column: \(0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 = 0\) - Third row, first column: \(0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 = 0\) - Third row, second column: \(0 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 = 0\) - Third row, third column: \(0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1\) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \(2A^2\) Now we calculate \(2A^2\): \[ 2A^2 = 2 \times \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \] ### Step 4: Calculate \(2A^2 - A^3\) Finally, we compute \(2A^2 - A^3\): \[ 2A^2 - A^3 = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \(2 - 1 = 1\) - First row, second column: \(4 - 3 = 1\) - First row, third column: \(0 - 0 = 0\) - Second row, first column: \(0 - 0 = 0\) - Second row, second column: \(2 - 1 = 1\) - Second row, third column: \(0 - 0 = 0\) - Third row, first column: \(0 - 0 = 0\) - Third row, second column: \(0 - 0 = 0\) - Third row, third column: \(2 - 1 = 1\) Thus, we have: \[ 2A^2 - A^3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Answer \[ 2A^2 - A^3 = A \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is an identity matrix of order 3 xx 3 if B = [b_(ij)] then b_(13) is equal to __________ .

Let A denote the matrix ({:(0,i),(i,0):}) , where i^(2) = -1 , and let I denote the identity matrix ({:(1,0),(0,1):}) . Then I + A + A^(2) + "….." + A^(2010) is -

Let the matrix A=[(1,2,3),(0, 1,2),(0,0,1)] and BA=A where B represent 3xx3 order matrix. If the total number of 1 in matrix A^(-1) and matrix B are p and q respectively. Then the value of p+q is equal to

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let {:A=[(0,0,-1),(0,-1,0),(-1,0,0)]:} . The only correct statement aboul the matrix A is

MCGROW HILL PUBLICATION-MATRICES-Questions from Previous Years. B -Architecture Entrance Examination Papers
  1. If A and B are square matrics of the same order then which one of the ...

    Text Solution

    |

  2. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  3. Let A and B be 2xx2 matrices with real entries . Let I be the 2xx2 ind...

    Text Solution

    |

  4. Let A=[[a,b],[c,d]] be a 2xx2 real matrix. If A-alphaI is invertible f...

    Text Solution

    |

  5. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  6. Let A=[(a,b),(c,d)]be a 2 xx 2 matrix, where a, b, c, d take value 0 t...

    Text Solution

    |

  7. Let S be the set of all real matrices A = [(a,b),(c,d)] such that a+d ...

    Text Solution

    |

  8. If S(n) denotes the sum of first n natural numbers.the [S(1)+S(2)x+S(3...

    Text Solution

    |

  9. Let A = [(1,1),(0,1)] and B = [(b(1),b(2)),(b(3),b(4))] . If 10 A^(10...

    Text Solution

    |

  10. If for a matrix A, absA=6and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:}, th...

    Text Solution

    |

  11. Let S be the set of all real values of a for which the following syste...

    Text Solution

    |

  12. If A = ((2,52,152),(4,1-6,358),(6,162,620)) then the determinant of ad...

    Text Solution

    |

  13. Let S be the set of all real values of lambda for which the system of ...

    Text Solution

    |

  14. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  15. If B = [(-2,-2),(-1,0)] and A is a matrix such that A^(-1) B = B^(-1) ...

    Text Solution

    |

  16. Let [(3a,b,c),(b,3c,a),(c,a,3b)] be a 3xx3 matrix where a,b,c in R . I...

    Text Solution

    |

  17. The value of a for which the system linear of equations x+ay+z=1 a...

    Text Solution

    |

  18. Suppose A is a 2xx2 matrix for which A^(2)+A+I(2)=O(2) then det (adj (...

    Text Solution

    |

  19. If the system of linear equations : x+4y-3z=2 2x+7y+4z=alpha -x-...

    Text Solution

    |

  20. Let (a,b) be the solution of the system [(x,y)][(1,3),(5,1)]=[(2,1)]...

    Text Solution

    |