Home
Class 12
MATHS
Let A = [(1,1),(0,1)] and B = [(b(1),b(2...

Let A = `[(1,1),(0,1)]` and B = `[(b_(1),b_(2)),(b_(3),b_(4))]` . If `10 A^(10) +Adj (A^(10))` = B then `b_(1)+b_(2)+b_(3)+b_(4)` is equal to :

A

91

B

92

C

111

D

112

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( b_1 + b_2 + b_3 + b_4 \) given the equation: \[ 10 A^{10} + \text{Adj}(A^{10}) = B \] where \( A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) and \( B = \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \). ### Step 1: Calculate \( A^{10} \) First, we will find \( A^{10} \). To do this, we can observe the pattern in the powers of \( A \). 1. Calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 1 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \] 2. Calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \] 3. Continuing this pattern, we can see that: \[ A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \] Thus, \( A^{10} = \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} \). ### Step 2: Calculate \( \text{Adj}(A^{10}) \) The adjoint of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{Adj} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For \( A^{10} = \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} \): \[ \text{Adj}(A^{10}) = \begin{pmatrix} 1 & -10 \\ 0 & 1 \end{pmatrix} \] ### Step 3: Substitute into the equation Now we substitute \( A^{10} \) and \( \text{Adj}(A^{10}) \) into the equation: \[ 10 A^{10} = 10 \begin{pmatrix} 1 & 10 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 100 \\ 0 & 10 \end{pmatrix} \] Adding the two matrices: \[ 10 A^{10} + \text{Adj}(A^{10}) = \begin{pmatrix} 10 & 100 \\ 0 & 10 \end{pmatrix} + \begin{pmatrix} 1 & -10 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 + 1 & 100 - 10 \\ 0 + 0 & 10 + 1 \end{pmatrix} = \begin{pmatrix} 11 & 90 \\ 0 & 11 \end{pmatrix} \] ### Step 4: Identify elements of matrix \( B \) From the equation \( 10 A^{10} + \text{Adj}(A^{10}) = B \), we have: \[ B = \begin{pmatrix} 11 & 90 \\ 0 & 11 \end{pmatrix} \] Thus, we can identify: - \( b_1 = 11 \) - \( b_2 = 90 \) - \( b_3 = 0 \) - \( b_4 = 11 \) ### Step 5: Calculate \( b_1 + b_2 + b_3 + b_4 \) Now, we calculate the sum: \[ b_1 + b_2 + b_3 + b_4 = 11 + 90 + 0 + 11 = 112 \] ### Final Answer Thus, the value of \( b_1 + b_2 + b_3 + b_4 \) is: \[ \boxed{112} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

A=[[1,1],[0,1]] and B=[[b_(1),b_(2)],[b_(3),b_(4)]] are two matrices such that , 10(A^(10))+adj(A^(10))=B .What is the value of sum_(k=1)^(4)b_(k) ?

If A =[{:(1,-1),(1,2):}]and B = [{:(1,0),(1,1):}] , then what is B^(-1)A^(-1) equal to ?

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (A+B)'=A'+B'

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :

MCGROW HILL PUBLICATION-MATRICES-Questions from Previous Years. B -Architecture Entrance Examination Papers
  1. Let A and B be 2xx2 matrices with real entries . Let I be the 2xx2 ind...

    Text Solution

    |

  2. Let A=[[a,b],[c,d]] be a 2xx2 real matrix. If A-alphaI is invertible f...

    Text Solution

    |

  3. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  4. Let A=[(a,b),(c,d)]be a 2 xx 2 matrix, where a, b, c, d take value 0 t...

    Text Solution

    |

  5. Let S be the set of all real matrices A = [(a,b),(c,d)] such that a+d ...

    Text Solution

    |

  6. If S(n) denotes the sum of first n natural numbers.the [S(1)+S(2)x+S(3...

    Text Solution

    |

  7. Let A = [(1,1),(0,1)] and B = [(b(1),b(2)),(b(3),b(4))] . If 10 A^(10...

    Text Solution

    |

  8. If for a matrix A, absA=6and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:}, th...

    Text Solution

    |

  9. Let S be the set of all real values of a for which the following syste...

    Text Solution

    |

  10. If A = ((2,52,152),(4,1-6,358),(6,162,620)) then the determinant of ad...

    Text Solution

    |

  11. Let S be the set of all real values of lambda for which the system of ...

    Text Solution

    |

  12. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  13. If B = [(-2,-2),(-1,0)] and A is a matrix such that A^(-1) B = B^(-1) ...

    Text Solution

    |

  14. Let [(3a,b,c),(b,3c,a),(c,a,3b)] be a 3xx3 matrix where a,b,c in R . I...

    Text Solution

    |

  15. The value of a for which the system linear of equations x+ay+z=1 a...

    Text Solution

    |

  16. Suppose A is a 2xx2 matrix for which A^(2)+A+I(2)=O(2) then det (adj (...

    Text Solution

    |

  17. If the system of linear equations : x+4y-3z=2 2x+7y+4z=alpha -x-...

    Text Solution

    |

  18. Let (a,b) be the solution of the system [(x,y)][(1,3),(5,1)]=[(2,1)]...

    Text Solution

    |

  19. If A^(20) = [(a,b),(c,d)] where A=[(1,1),(0,2)] then a+b+c+d is equal ...

    Text Solution

    |

  20. The number of solutions of the equations 3x-y-z=0 -3x+2y+z=0 -3x...

    Text Solution

    |