Home
Class 12
MATHS
If A^(20) = [(a,b),(c,d)] where A=[(1,1)...

If `A^(20) = [(a,b),(c,d)]` where A`=[(1,1),(0,2)]` then a+b+c+d is equal to

A

`2^(19)`

B

`2^(20)`

C

`2^(21)`

D

`2^(22)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( a + b + c + d \) where \( A^{20} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) and \( A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 0 = 1 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 2 = 3 \) - Second row, first column: \( 0 \cdot 1 + 2 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 1 + 2 \cdot 2 = 4 \) Thus, \[ A^2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 3 \cdot 0 = 1 \) - First row, second column: \( 1 \cdot 1 + 3 \cdot 2 = 7 \) - Second row, first column: \( 0 \cdot 1 + 4 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 1 + 4 \cdot 2 = 8 \) Thus, \[ A^3 = \begin{pmatrix} 1 & 7 \\ 0 & 8 \end{pmatrix} \] ### Step 3: Identify the pattern From the calculations, we observe a pattern: - \( A^1 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 7 \\ 0 & 8 \end{pmatrix} \) We can see that: - The first element remains 1. - The second element in the first row appears to follow the pattern \( 2^n - 1 \). - The second element in the second row is \( 2^n \). ### Step 4: Generalize the pattern for \( A^n \) Based on the observations, we can generalize: \[ A^n = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix} \] ### Step 5: Calculate \( A^{20} \) Using the generalized formula: \[ A^{20} = \begin{pmatrix} 1 & 2^{20} - 1 \\ 0 & 2^{20} \end{pmatrix} \] ### Step 6: Identify \( a, b, c, d \) From \( A^{20} \): - \( a = 1 \) - \( b = 2^{20} - 1 \) - \( c = 0 \) - \( d = 2^{20} \) ### Step 7: Calculate \( a + b + c + d \) Now, we calculate: \[ a + b + c + d = 1 + (2^{20} - 1) + 0 + 2^{20} \] This simplifies to: \[ = 1 + 2^{20} - 1 + 2^{20} = 2 \cdot 2^{20} = 2^{21} \] ### Final Answer Thus, the value of \( a + b + c + d \) is \( 2^{21} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE /JEE Main Papers|71 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If A=[(a,b),(c,d)] is such that |A|=0 and A^(2)-(a+d)A+kI=0 ,then k is equal to

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

If A= [[a,b],[c,d]] and I= [[1,0],[0,1]] then A^(2)-(a+d)A=

Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)] , then the number of divisors of (a+b+2020c+d) is equal to

If Delta_1=|(1,0),(a,b)| and Delta_2=|(1,0),(c,d)| , then Delta_2Delta_1 is equal to :

If a/b = c/d , then ( ( a +c )/( b + d ) ) is equal to

Let A=[(0,alpha),(0,0)] and (A+1)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

If A=[(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d) , then 2b c is equal to 3/2 (b) (3a)/(2d) (c) 3a d (d) a^2d^2

MCGROW HILL PUBLICATION-MATRICES-Questions from Previous Years. B -Architecture Entrance Examination Papers
  1. Let A and B be 2xx2 matrices with real entries . Let I be the 2xx2 ind...

    Text Solution

    |

  2. Let A=[[a,b],[c,d]] be a 2xx2 real matrix. If A-alphaI is invertible f...

    Text Solution

    |

  3. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  4. Let A=[(a,b),(c,d)]be a 2 xx 2 matrix, where a, b, c, d take value 0 t...

    Text Solution

    |

  5. Let S be the set of all real matrices A = [(a,b),(c,d)] such that a+d ...

    Text Solution

    |

  6. If S(n) denotes the sum of first n natural numbers.the [S(1)+S(2)x+S(3...

    Text Solution

    |

  7. Let A = [(1,1),(0,1)] and B = [(b(1),b(2)),(b(3),b(4))] . If 10 A^(10...

    Text Solution

    |

  8. If for a matrix A, absA=6and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:}, th...

    Text Solution

    |

  9. Let S be the set of all real values of a for which the following syste...

    Text Solution

    |

  10. If A = ((2,52,152),(4,1-6,358),(6,162,620)) then the determinant of ad...

    Text Solution

    |

  11. Let S be the set of all real values of lambda for which the system of ...

    Text Solution

    |

  12. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  13. If B = [(-2,-2),(-1,0)] and A is a matrix such that A^(-1) B = B^(-1) ...

    Text Solution

    |

  14. Let [(3a,b,c),(b,3c,a),(c,a,3b)] be a 3xx3 matrix where a,b,c in R . I...

    Text Solution

    |

  15. The value of a for which the system linear of equations x+ay+z=1 a...

    Text Solution

    |

  16. Suppose A is a 2xx2 matrix for which A^(2)+A+I(2)=O(2) then det (adj (...

    Text Solution

    |

  17. If the system of linear equations : x+4y-3z=2 2x+7y+4z=alpha -x-...

    Text Solution

    |

  18. Let (a,b) be the solution of the system [(x,y)][(1,3),(5,1)]=[(2,1)]...

    Text Solution

    |

  19. If A^(20) = [(a,b),(c,d)] where A=[(1,1),(0,2)] then a+b+c+d is equal ...

    Text Solution

    |

  20. The number of solutions of the equations 3x-y-z=0 -3x+2y+z=0 -3x...

    Text Solution

    |