Home
Class 12
MATHS
An antiderivature of the intergral inte^...

An antiderivature of the intergral `inte^(x)((1-x)/(1+x^(2)))^(2)dx` is

A

`e^(x)(1-x)`

B

`(-xe^(x))/((1+x^(2))^(2))`

C

`(e^(x)(1-x))/((1+x^(2))^(2))`

D

`(e^(x))/(1+x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)(1-x)^(2))/((1+x)^(2))dx

int((1+x)/(1+x^(2)))dx

int((1+x))/((1+x^(2)))dx

Let I= int_(0)^(1) (x^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x+1) dx, is

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

int e^(x) ((1+ x^(2)))/((1+x)^(2))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(dx)/((x+1)(x^(2)+1))

int((1+x)^(2)dx)/(x(1+x^(2)))

"int_1^(2)((1)/(x)-(1)/(2x^(2)))dx