Home
Class 12
MATHS
int(3^(x+1)-7^(x-1))/(21^(x))dx=K(1)3^(-...

`int(3^(x+1)-7^(x-1))/(21^(x))dx=K_(1)3^(-x)+K_(2)7^(-x)+C`

A

`K_(1)=(1)/(7log3),K_(2)=(1)/(3log7)`

B

`K_(1)=(1)/(log3),K_(2)=-(1)/(3log7)`

C

`K_(1)=(1)/(7log3),K_(2)=-(3)/(log7)`

D

`K_(1)=(3)/(log7),K_(2)=(-7)/(log7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3^{(x+1)} - 7^{(x-1)}}{21^x} \, dx, \] we can start by rewriting the denominator \(21^x\) in terms of its prime factors: \[ 21^x = (3 \cdot 7)^x = 3^x \cdot 7^x. \] Now, we can rewrite the integral as: \[ \int \frac{3^{(x+1)} - 7^{(x-1)}}{3^x \cdot 7^x} \, dx. \] Next, we can split the integral into two separate terms: \[ \int \left( \frac{3^{(x+1)}}{3^x \cdot 7^x} - \frac{7^{(x-1)}}{3^x \cdot 7^x} \right) \, dx. \] This simplifies to: \[ \int \left( \frac{3^{x+1}}{3^x} \cdot \frac{1}{7^x} - \frac{7^{(x-1)}}{7^x} \cdot \frac{1}{3^x} \right) \, dx = \int \left( 3 \cdot 7^{-x} - \frac{7^{-1}}{3^x} \right) \, dx. \] Now we can rewrite this as: \[ \int \left( 3 \cdot 7^{-x} - \frac{1}{7} \cdot 3^{-x} \right) \, dx. \] Next, we can integrate each term separately: 1. For the first term \(3 \cdot 7^{-x}\): \[ \int 3 \cdot 7^{-x} \, dx = 3 \cdot \int 7^{-x} \, dx = 3 \cdot \left(-\frac{7^{-x}}{\ln 7}\right) = -\frac{3 \cdot 7^{-x}}{\ln 7}. \] 2. For the second term \(-\frac{1}{7} \cdot 3^{-x}\): \[ \int -\frac{1}{7} \cdot 3^{-x} \, dx = -\frac{1}{7} \cdot \left(-\frac{3^{-x}}{\ln 3}\right) = \frac{3^{-x}}{7 \ln 3}. \] Putting it all together, we have: \[ -\frac{3 \cdot 7^{-x}}{\ln 7} + \frac{3^{-x}}{7 \ln 3} + C. \] Now, we can express the final result in the form: \[ K_1 \cdot 3^{-x} + K_2 \cdot 7^{-x} + C, \] where \[ K_1 = \frac{1}{7 \ln 3} \quad \text{and} \quad K_2 = -\frac{3}{\ln 7}. \] Thus, the final answer is: \[ \int \frac{3^{(x+1)} - 7^{(x-1)}}{21^x} \, dx = -\frac{3 \cdot 7^{-x}}{\ln 7} + \frac{3^{-x}}{7 \ln 3} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(x^(3)+3x^(2)+2x-7)/(2x+1)dx

int(7x+1)/((x+1)(x-2)(x-3))dx

If int(e^(9x)+e^(11x))/(e^(x)+e^(-x))dx=(e^(k_(1)x))/(k_(2))+c , where c denotes the constant of integration,then k_(1)+k_(2)=

If int(e^(9x)+e^(11x))/(e^(x)+e^(-x))dx=(e^(k_(1)x))/(k_(2))+c where c denotes the constant of integration,then k_(1)+k_(2) =

int(1)/(3x^(2)+7)dx

int(1)/(3x^(2)+7)dx

int(1)/((x-3)(x^(2)-7))dx=

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is