Home
Class 12
MATHS
If int cos x cos 2x cos 3x dx= A(1)sin...

If `int cos x cos 2x cos 3x dx`= `A_(1)sin 2x + A_(2) sin 4x + A_(3) sin 6x + C` then

A

`A_(1)=(1)/(2),A_(2)=(1)/(4)`

B

`A_(1) = (1)/(4),A_(2) = (1)/(8)`

C

`A_(2)=(1)/(16),A_(3)=(1)/(8)`

D

`A_(1)=(1)/(8),A_(3)=(1)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \cos x \cos 2x \cos 3x \, dx \), we can use trigonometric identities to simplify the expression. Let's go through the steps systematically. ### Step 1: Use the Product-to-Sum Formulas We start by using the product-to-sum identities. The formula for the product of cosines is: \[ 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \] We can apply this to \( \cos x \cos 3x \): \[ \cos x \cos 3x = \frac{1}{2} \left( \cos(4x) + \cos(-2x) \right) = \frac{1}{2} \left( \cos(4x) + \cos(2x) \right) \] Thus, we can rewrite the integral as: \[ I = \int \cos 2x \cdot \frac{1}{2} \left( \cos(4x) + \cos(2x) \right) \, dx \] ### Step 2: Distribute the Integral Now, we can distribute the integral: \[ I = \frac{1}{2} \int \cos 2x \cos 4x \, dx + \frac{1}{2} \int \cos^2 2x \, dx \] ### Step 3: Solve Each Integral 1. **Integral of \( \cos 2x \cos 4x \)**: Using the product-to-sum formula again: \[ 2 \cos 2x \cos 4x = \cos(6x) + \cos(-2x) = \cos(6x) + \cos(2x) \] Therefore, \[ \int \cos 2x \cos 4x \, dx = \frac{1}{2} \left( \int \cos(6x) \, dx + \int \cos(2x) \, dx \right) \] The integrals are: \[ \int \cos(6x) \, dx = \frac{1}{6} \sin(6x) + C_1 \] \[ \int \cos(2x) \, dx = \frac{1}{2} \sin(2x) + C_2 \] Thus, \[ \int \cos 2x \cos 4x \, dx = \frac{1}{2} \left( \frac{1}{6} \sin(6x) + \frac{1}{2} \sin(2x) \right) = \frac{1}{12} \sin(6x) + \frac{1}{4} \sin(2x) \] 2. **Integral of \( \cos^2 2x \)**: Using the identity \( \cos^2 A = \frac{1 + \cos(2A)}{2} \): \[ \int \cos^2 2x \, dx = \int \frac{1 + \cos(4x)}{2} \, dx = \frac{1}{2} \left( x + \frac{1}{4} \sin(4x) \right) \] ### Step 4: Combine the Results Now we can combine the results of the two integrals: \[ I = \frac{1}{2} \left( \frac{1}{12} \sin(6x) + \frac{1}{4} \sin(2x) \right) + \frac{1}{4} \left( x + \frac{1}{4} \sin(4x) \right) \] This simplifies to: \[ I = \frac{1}{24} \sin(6x) + \frac{1}{8} \sin(2x) + \frac{1}{8} x + \frac{1}{16} \sin(4x) + C \] ### Step 5: Identify Coefficients From the expression \( I = A_1 \sin(2x) + A_2 \sin(4x) + A_3 \sin(6x) + C \), we can identify: - \( A_1 = \frac{1}{8} \) - \( A_2 = \frac{1}{16} \) - \( A_3 = \frac{1}{24} \) ### Final Answer Thus, the values of \( A_1, A_2, A_3 \) are: - \( A_1 = \frac{1}{8} \) - \( A_2 = \frac{1}{16} \) - \( A_3 = \frac{1}{24} \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(cos 2x)/(1+sin x cos x)dx

int (cos x - sin x)/(1 + sin 2x) dx

int(sin x)/(cos3x*cos2x)dx

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

int (e ^ (cos x) (x sin ^ (3) x + cos x)) / (sin ^ (2) x) dx