Home
Class 12
MATHS
If int(dx)/(1+e^x)=x+Klog(1+e^(x))+C the...

If `int(dx)/(1+e^x)=x+Klog(1+e^(x))+C` then K is equal to

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \( I = \int \frac{dx}{1 + e^x} \) and compare it with the expression \( x + K \log(1 + e^x) + C \) to find the value of \( K \). ### Step-by-Step Solution: 1. **Start with the integral**: \[ I = \int \frac{dx}{1 + e^x} \] 2. **Rewrite the integrand**: We can express \( e^x \) in terms of \( e^{-x} \): \[ I = \int \frac{e^{-x}}{e^{-x} + 1} \, dx \] 3. **Substitution**: Let \( t = 1 + e^{-x} \). Then, the derivative \( dt = -e^{-x} \, dx \) or \( dx = -\frac{dt}{e^{-x}} \). Since \( e^{-x} = t - 1 \), we can rewrite \( dx \): \[ dx = -\frac{dt}{t - 1} \] 4. **Change of limits**: Substitute \( e^{-x} \) into the integral: \[ I = \int \frac{-dt}{t} = -\ln |t| + C \] Substituting back for \( t \): \[ I = -\ln |1 + e^{-x}| + C \] 5. **Using logarithmic properties**: We can express the logarithm: \[ I = -\ln(1 + e^{-x}) + C = \ln\left(\frac{1}{1 + e^{-x}}\right) + C \] 6. **Further simplification**: We can rewrite \( e^{-x} \) as \( \frac{1}{e^x} \): \[ I = \ln\left(\frac{e^x}{e^x + 1}\right) + C \] 7. **Expressing in terms of \( K \)**: Now, we can express this in the form \( x + K \log(1 + e^x) + C \): \[ I = x - \ln(1 + e^x) + C \] 8. **Comparing with the given expression**: From the expression \( x + K \log(1 + e^x) + C \), we can see that: \[ K = -1 \] ### Final Answer: Thus, the value of \( K \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

int(e^x dx)/(1-e^(x))

l=int(dx)/(1+e^(x)) is equal to

int1/(1+e^(x))dx is equal to

If I=int e^(-x)log(e^(x)+1)dx, then equal

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to