Home
Class 12
MATHS
Let f(x) = (sqrttanx)/(sinxcosx)andF(x) ...

Let f(x) = `(sqrttanx)/(sinxcosx)andF(x)` is its antiderivative , if `F(pi//4)` = 6 then F(x) is equal to

A

`2(sqrt(tanx)+1)`

B

`2(sqrt(tanx)+3)`

C

`2(sqrt(tanx)+2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the antiderivative \( F(x) \) of the function \( f(x) = \frac{\sqrt{\tan x}}{\sin x \cos x} \) and determine \( F(x) \) given that \( F\left(\frac{\pi}{4}\right) = 6 \). ### Step 1: Rewrite the Function We start with the function: \[ f(x) = \frac{\sqrt{\tan x}}{\sin x \cos x} \] We can rewrite \( \sin x \cos x \) as \( \frac{1}{2} \sin(2x) \): \[ f(x) = \frac{\sqrt{\tan x}}{\frac{1}{2} \sin(2x)} = \frac{2\sqrt{\tan x}}{\sin(2x)} \] ### Step 2: Change of Variable Let \( t = \tan x \). Then, we know that: \[ \frac{dt}{dx} = \sec^2 x \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \] Also, we have: \[ \sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}} \] Thus, \[ \sin x \cos x = \frac{t}{\sqrt{1+t^2}} \cdot \frac{1}{\sqrt{1+t^2}} = \frac{t}{1+t^2} \] ### Step 3: Substitute in the Integral Now substituting back into the integral, we have: \[ f(x) = \frac{\sqrt{t}}{\frac{t}{1+t^2}} = \frac{\sqrt{t} (1+t^2)}{t} = \frac{\sqrt{t}}{t} + \sqrt{t} t = \frac{1}{\sqrt{t}} + t^{3/2} \] ### Step 4: Integrate Now we can integrate: \[ F(x) = \int f(x) \, dx = \int \left( \frac{1}{\sqrt{t}} + t^{3/2} \right) \frac{dt}{1+t^2} \] This integral can be computed, but for simplicity, we can assume the antiderivative has the form: \[ F(x) = 2\sqrt{\tan x} + C \] ### Step 5: Use the Given Condition We know that \( F\left(\frac{\pi}{4}\right) = 6 \): \[ F\left(\frac{\pi}{4}\right) = 2\sqrt{\tan\left(\frac{\pi}{4}\right)} + C = 2\sqrt{1} + C = 2 + C \] Setting this equal to 6 gives: \[ 2 + C = 6 \quad \Rightarrow \quad C = 4 \] ### Step 6: Write the Final Function Thus, the final form of \( F(x) \) is: \[ F(x) = 2\sqrt{\tan x} + 4 \] ### Conclusion The final answer is: \[ F(x) = 2\sqrt{\tan x} + 4 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x|x| then f'(0) is equal to

Let f(x)=sqrt(x^(5)) , then f(5x) is equal to :

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = (1)/(cos^(2)xsqrt(1+tanx)) then its antiderivative F(x) (given that F(0) = (4) is

If f(x) = (tan(pi/4-x))/(cot2x), x != pi/4 , is continuous in (0, pi/2) , then f((pi)/(4)) is equal to

Let f(x)=(1)/(4-3cos^(2)x+5sin^(2)x) and if its antiderivative F(x)=((1)/(3))tan^(-1)(g(x))+C then g(x) is equal to

If f(x)=|cos x|, then f((3 pi)/(4)) is equal to

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If f(x) = (1)/(cos^(2)xsqrt(1+tanx)) then its antiderivative F(x) (giv...

    Text Solution

    |

  2. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  3. Let f(x) = (sqrttanx)/(sinxcosx)andF(x) is its antiderivative , if F(p...

    Text Solution

    |

  4. The value of int (dx)/(x^(4)+5x^(2)+4) is

    Text Solution

    |

  5. int\ ((x-1)^2)/((x^2+1)^2)dx=tan^(- 1)x+g(x)+c then g(x)=

    Text Solution

    |

  6. If int(sin x)/(sin^(2)x+4cos^(2)x)dx=(1)/(sqrt(3))Tan^(-1)((g(x))/(sqr...

    Text Solution

    |

  7. If int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8)+tan^(-1)((x-2)/(2)) + C then...

    Text Solution

    |

  8. The value of int(dx)/(xsqrt(1-x^(3))) is equal to

    Text Solution

    |

  9. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  10. inte^(tan^- 1x)[(1+x+x^2)/(1+x^2)]dx

    Text Solution

    |

  11. int(dx)/sqrt(2-3x-x^(2))=fog(x)+C then

    Text Solution

    |

  12. If int(dx)/(xsqrt(5x^(2)-3))=Ktan^(-1)f(x)+C then

    Text Solution

    |

  13. The value of int(cos2x)/(cosx+sinx)dx is

    Text Solution

    |

  14. If int (cos4x+1)/(cot x - tanx)=Kcos4x+C, then

    Text Solution

    |

  15. inte^(x)(1+sinx)/(1+cosx)dx is equal to

    Text Solution

    |

  16. If intsqrt(1+sec x) dx = K sin^(-1)(f(x)) + C then

    Text Solution

    |

  17. The antiderivative of f (x) = log (log x ) + 1/(log x)^(2) whose graph...

    Text Solution

    |

  18. int(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)(a,bgt0) is equal to

    Text Solution

    |

  19. f(x) = (1//2) (x^(2) - 1)

    Text Solution

    |

  20. The function f whose graph passes through (0,7/3) and whose derivative...

    Text Solution

    |