Home
Class 12
MATHS
If int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8...

If `int(x)/(x^(2)-4x+8)dx=Klog(x^(2)-4x+8)+tan^(-1)((x-2)/(2)) + C` then the value of K is

A

1\2

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( K \) in the given integral equation: \[ \int \frac{x}{x^2 - 4x + 8} \, dx = K \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x - 2}{2}\right) + C \] we will solve the integral step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x}{x^2 - 4x + 8} \, dx \] ### Step 2: Simplify the Denominator First, we can differentiate the denominator \( x^2 - 4x + 8 \): \[ \frac{d}{dx}(x^2 - 4x + 8) = 2x - 4 \] We can express \( x \) in terms of \( 2x - 4 \) to facilitate integration. ### Step 3: Split the Integral We can rewrite \( x \) as follows: \[ x = \frac{1}{2}(2x - 4) + 2 \] Thus, we can split the integral: \[ I = \int \frac{1}{2}(2x - 4) \cdot \frac{1}{x^2 - 4x + 8} \, dx + \int \frac{2}{x^2 - 4x + 8} \, dx \] ### Step 4: Change of Variable for the First Integral Let \( t = x^2 - 4x + 8 \), then \( dt = (2x - 4) \, dx \). Therefore, the first integral becomes: \[ \int \frac{dt}{2t} = \frac{1}{2} \log |t| + C_1 = \frac{1}{2} \log |x^2 - 4x + 8| + C_1 \] ### Step 5: Evaluate the Second Integral Now we evaluate the second integral: \[ \int \frac{2}{x^2 - 4x + 8} \, dx \] We can complete the square in the denominator: \[ x^2 - 4x + 8 = (x - 2)^2 + 4 \] Thus, we have: \[ \int \frac{2}{(x - 2)^2 + 4} \, dx \] This integral can be solved using the formula: \[ \int \frac{a}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Here, \( a = 2 \): \[ = \tan^{-1}\left(\frac{x - 2}{2}\right) + C_2 \] ### Step 6: Combine the Results Combining both parts of the integral, we have: \[ I = \frac{1}{2} \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x - 2}{2}\right) + C \] ### Step 7: Compare with the Given Expression Now, comparing this with the given expression: \[ K \log(x^2 - 4x + 8) + \tan^{-1}\left(\frac{x - 2}{2}\right) + C \] We can see that \( K = \frac{1}{2} \). ### Final Answer Thus, the value of \( K \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x^(2)-4x+8)dx

int(dx)/((x^(2)+4x+8))

int(4x+1)/(2x^(2)+x+1)dx

If int frac{xdx}{x^2-4x+8}=K log (x^2-4x+8)+tan^(-1)(frac{x-2}{2})+C , then the value of K is:

int(4e^x+4)/(2e^x-8)dx=

int(8)/((x+2)(x^(2)+4))dx

int(3+8x)/(4x^2+3x+1)dx=?

int(dx)/(sqrt(4x^(2)-3x+8))