Home
Class 12
MATHS
int(dx)/sqrt(2-3x-x^(2))=fog(x)+C then...

`int(dx)/sqrt(2-3x-x^(2))=fog(x)+C` then

A

`f(x) = sin^(-1)x,g(x)=(2x-3)/(sqrt(17))`

B

`f(x)=tan^(-1) x, g(x) =(2x-3)/(sqrt17)`

C

`f(x)=sin^(-1)x,g(x) = (2x+3)/(17)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{2 - 3x - x^2}} \), we will follow these steps: ### Step 1: Rewrite the expression under the square root We start with the expression under the square root: \[ 2 - 3x - x^2 \] We can rearrange it as: \[ -(x^2 + 3x - 2) \] Next, we will complete the square for the quadratic expression \( x^2 + 3x - 2 \). ### Step 2: Complete the square To complete the square for \( x^2 + 3x - 2 \): 1. Take half of the coefficient of \( x \) (which is \( 3 \)), square it, and add/subtract it: \[ \left(\frac{3}{2}\right)^2 = \frac{9}{4} \] 2. Rewrite the expression: \[ x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 2 = \left(x + \frac{3}{2}\right)^2 - \frac{17}{4} \] Thus, we can write: \[ 2 - 3x - x^2 = -\left(\left(x + \frac{3}{2}\right)^2 - \frac{17}{4}\right) = \frac{17}{4} - \left(x + \frac{3}{2}\right)^2 \] ### Step 3: Substitute into the integral Now we substitute this back into the integral: \[ I = \int \frac{dx}{\sqrt{\frac{17}{4} - \left(x + \frac{3}{2}\right)^2}} \] We can factor out \( \frac{17}{4} \) from the square root: \[ I = \int \frac{dx}{\sqrt{\frac{17}{4}} \sqrt{1 - \frac{4}{17}\left(x + \frac{3}{2}\right)^2}} \] This simplifies to: \[ I = \frac{2}{\sqrt{17}} \int \frac{dx}{\sqrt{1 - \frac{4}{17}\left(x + \frac{3}{2}\right)^2}} \] ### Step 4: Use the standard integral formula The integral \( \int \frac{dx}{\sqrt{1 - k^2 x^2}} \) has the result \( \sin^{-1}(kx) + C \). In our case, we have: \[ k^2 = \frac{4}{17} \implies k = \frac{2}{\sqrt{17}} \] Thus, we can write: \[ I = \frac{2}{\sqrt{17}} \cdot \frac{\sqrt{17}}{2} \sin^{-1}\left(\frac{2}{\sqrt{17}} \left(x + \frac{3}{2}\right)\right) + C \] This simplifies to: \[ I = \sin^{-1}\left(\frac{2}{\sqrt{17}} \left(x + \frac{3}{2}\right)\right) + C \] ### Step 5: Identify \( f(g(x)) \) From the expression \( I = \sin^{-1}\left(\frac{2}{\sqrt{17}} \left(x + \frac{3}{2}\right)\right) + C \), we can identify: - \( g(x) = \frac{2}{\sqrt{17}}(x + \frac{3}{2}) \) - \( f(x) = \sin^{-1}(x) \) ### Final Answer Thus, we have: \[ I = f(g(x)) + C \] where \( f(x) = \sin^{-1}(x) \) and \( g(x) = \frac{2}{\sqrt{17}}(x + \frac{3}{2}) \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(3x)sqrt(2-3x^(2))dx

int(dx)/(sqrt(3x^(2)+4))

int(dx)/(sqrt(3x^(2)-5))

int(dx)/(sqrt(3x^2-4x+2))=

int(dx)/(sqrt(1+2x-3x^(2)))

int(dx)/(sqrt(3x^2+8))=

int(dx)/(sqrt(2x^2+3x+5))=

int(dx)/(sqrt(x^(2)-3x+2))

int (dx)/(x sqrt(x^2+3))

int(dx)/(sqrt(2x^(2)+3x-2))