Home
Class 12
MATHS
int(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)(a,...

`int(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)(a,bgt0)` is equal to

A

`sin^(-1)((a//b)tanx) + C`

B

`tan^(-1)((b//a)tanx) + C`

C

`(1)/(ab)tan^(-1)(((b)/(a))tanx)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} \] where \( a, b > 0 \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} \] We divide both the numerator and the denominator by \(\cos^2 x\): \[ = \int \frac{1/\cos^2 x}{\frac{a^2 \cos^2 x}{\cos^2 x} + \frac{b^2 \sin^2 x}{\cos^2 x}} \, dx \] This simplifies to: \[ = \int \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} \, dx \] ### Step 2: Substitute \( t = \tan x \) Next, we use the substitution \( t = \tan x \). Then, the differential \( dx \) becomes: \[ dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \] Substituting this into the integral gives: \[ = \int \frac{\sec^2 x}{a^2 + b^2 t^2} \cdot \frac{dt}{1 + t^2} \] ### Step 3: Simplify the Integral Now, we can rewrite the integral as: \[ = \int \frac{dt}{(a^2 + b^2 t^2)(1 + t^2)} \] ### Step 4: Use Partial Fraction Decomposition To integrate this, we can use partial fraction decomposition. We express: \[ \frac{1}{(a^2 + b^2 t^2)(1 + t^2)} = \frac{A}{a^2 + b^2 t^2} + \frac{B}{1 + t^2} \] Multiplying through by the denominator: \[ 1 = A(1 + t^2) + B(a^2 + b^2 t^2) \] ### Step 5: Solve for Constants Setting coefficients for \( t^2 \) and constant terms, we can solve for \( A \) and \( B \). ### Step 6: Integrate Each Term After finding \( A \) and \( B \), we integrate each term separately. The integral of \( \frac{1}{a^2 + b^2 t^2} \) is: \[ \frac{1}{b} \tan^{-1}\left(\frac{bt}{a}\right) \] And the integral of \( \frac{1}{1 + t^2} \) is: \[ \tan^{-1}(t) \] ### Step 7: Combine Results Combining the results from the integrals, we substitute back \( t = \tan x \): \[ \int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \tan^{-1}\left(\frac{b \tan x}{a}\right) + C \] ### Final Result Thus, the final result is: \[ \int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \tan^{-1}\left(\frac{b \tan x}{a}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|23 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

What is int_(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal to ?

What is int (dx)/(a^(2) sin^(2)x + b^(2) cos^(2)x) equal to ?

int (sin 2x)/((a^(2) cos^(2)x+b^(2) sin^(2)x))dx

int_(0)^( pi)(x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx

int(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x) is equal to

What is int(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x) equal to ?

Evaluate int_(0)^(pi)(x)/((a^(2)cos^(2)x+b^(2)sin^(2)x))dx .

Evaluate the following : int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If intsqrt(1+sec x) dx = K sin^(-1)(f(x)) + C then

    Text Solution

    |

  2. The antiderivative of f (x) = log (log x ) + 1/(log x)^(2) whose graph...

    Text Solution

    |

  3. int(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)(a,bgt0) is equal to

    Text Solution

    |

  4. f(x) = (1//2) (x^(2) - 1)

    Text Solution

    |

  5. The function f whose graph passes through (0,7/3) and whose derivative...

    Text Solution

    |

  6. The value of int (sin alpha)/(sqrt(1+cos alpha)) dalpha is

    Text Solution

    |

  7. The value of int(dx)/(5+4cosx) is

    Text Solution

    |

  8. int(dx)/(x(x^(4)+1)) is equal to

    Text Solution

    |

  9. int(dx)/(sinx+cosx) is equal to

    Text Solution

    |

  10. The primitive of (1)/((x-a)^(3//2)(b-x)^(1//2)) is

    Text Solution

    |

  11. If f(x) is the primitive of (sin 3sqrt(x)log(1+3x))/((tan^(-1)sqrt(x))...

    Text Solution

    |

  12. If the primitive of f(x) = (1)/(3 sin x + sin^(3) x) is equal to f(x) ...

    Text Solution

    |

  13. The value of int (cos x)/(sin x + cos x) dx is

    Text Solution

    |

  14. If the primitive of (1)/(e^(x)-1)^(2) is f(x) - log |g (x)| + C then

    Text Solution

    |

  15. If (dx)/(sin^(4)x+cos^(4)x)=(1)/(sqrt(2))tan^(-1)f(x)+C

    Text Solution

    |

  16. The 1int(sin^(2)x)/(cos^(6)x)dx is a

    Text Solution

    |

  17. If int tan^(7) x dx = f(x) + C then

    Text Solution

    |

  18. If int(dx)/(sin x cos x)=log|f(x)|+C then

    Text Solution

    |

  19. If polynomials P and Q satisfyint[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsi...

    Text Solution

    |

  20. Let f(x) = inte^(x^(2))(x-2)(x-3)(x-4)dx then f increases on

    Text Solution

    |