Home
Class 12
MATHS
The value of int(dx)/(sqrt(x)+root3(x)) ...

The value of `int(dx)/(sqrt(x)+root3(x))` is

A

`root3(x)+3(root3(x))-6(root6(x))+6log(root6(x)+1)+C`

B

`2sqrt(x)+root3(x)-6log(root6(x+1))+C`

C

`2sqrt(x)-3root3(x)+6root6(x)-6log(root6 (x)+1)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} \] we will use a substitution method. Let's break it down step by step. ### Step 1: Substitute Variables Let \( u = x^{1/6} \). Then, we have: \[ x = u^6 \quad \text{and} \quad dx = 6u^5 \, du \] ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of \( u \): \[ I = \int \frac{6u^5 \, du}{\sqrt{u^6} + \sqrt[3]{u^6}} = \int \frac{6u^5 \, du}{u^3 + u^2} \] ### Step 3: Simplify the Denominator Factor out \( u^2 \) from the denominator: \[ I = \int \frac{6u^5 \, du}{u^2(u + 1)} = 6 \int \frac{u^3 \, du}{u + 1} \] ### Step 4: Polynomial Long Division Now, perform polynomial long division on \( \frac{u^3}{u + 1} \): - Divide \( u^3 \) by \( u + 1 \): - \( u^2 \) gives \( u^3 + u^2 \) - Subtract: \( u^3 - (u^3 + u^2) = -u^2 \) - Next, divide \( -u^2 \) by \( u + 1 \): - \( -u \) gives \( -u^2 - u \) - Subtract: \( -u^2 - (-u^2 - u) = u \) - Finally, divide \( u \) by \( u + 1 \): - \( 1 \) gives \( u + 1 \) - Subtract: \( u - (u + 1) = -1 \) Thus, we have: \[ \frac{u^3}{u + 1} = u^2 - u + 1 - \frac{1}{u + 1} \] ### Step 5: Substitute Back into the Integral Now substitute this back into the integral: \[ I = 6 \int \left( u^2 - u + 1 - \frac{1}{u + 1} \right) du \] ### Step 6: Integrate Each Term Now integrate each term: \[ I = 6 \left( \frac{u^3}{3} - \frac{u^2}{2} + u - \log|u + 1| \right) + C \] ### Step 7: Substitute Back for \( u \) Substituting back \( u = x^{1/6} \): \[ I = 6 \left( \frac{(x^{1/6})^3}{3} - \frac{(x^{1/6})^2}{2} + x^{1/6} - \log|x^{1/6} + 1| \right) + C \] \[ = 2x^{1/2} - 3x^{1/3} + 6x^{1/6} - 6\log|x^{1/6} + 1| + C \] ### Final Answer Thus, the value of the integral is: \[ I = 2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\log(\sqrt[6]{x} + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS))|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)+root(3)(x))

The value of int(dx)/sqrt(1-x) is

The value of int (dx)/(sqrt (a-x))

int(dx)/(sqrt(x-3))

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

The value of int(dx)/(cos^(3)sqrt(sin2x)) is equal to

int(dx)/(sqrt(x+2)+root6(x+2))=

The value of int_(-1)^(1)(dx)/(sqrt(|x|)) is

int(dx)/(sqrt((x-2)(x-3)))=

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If int(dx)/(x^(3)(x-1)^(1//2))=(sqrt(x-1)(3x+2))/(4x^(2)) + K tan^(-1)...

    Text Solution

    |

  2. The value of int(dx)/(sqrt(x)+root3(x)) is

    Text Solution

    |

  3. int(x^(5)+x^(4)+4x^(3)+4x^(2)+4x+4)/((x^(2)+2)^(5)) is equal to

    Text Solution

    |

  4. If int(xtan^(-1))/(sqrt(1+x^(2)))dx= sqrt(1+x^(2)) f(x)+Klog(x+sqrt(...

    Text Solution

    |

  5. The value of int (sinx)/(sin4x) dzx is

    Text Solution

    |

  6. int(dx)/((x+1)sqrt(2x^(2)+3x+4)) =K logf(x) + C them

    Text Solution

    |

  7. If int(dx)/((1+x^(2))sqrt(1-x^(2)))=F(x)andF(1)=0, then for x gt 0, f ...

    Text Solution

    |

  8. Let f (x) be a polynomial of degree three such that f(0) = 1, f(1) = 2...

    Text Solution

    |

  9. If =intlog(x+sqrt(1+x^(2)))/(sqrt(1+x^(2)))dx=g o f (x) xConst. then

    Text Solution

    |

  10. The value of int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is

    Text Solution

    |

  11. If f(x) = (x+2)/(2x+3). Then int(f(x)/(x^(2)))^(1//2)dx is equal to (...

    Text Solution

    |

  12. The value of int(secxdx)/(sqrt(sin(2x+theta)+sintheta)) is

    Text Solution

    |

  13. If int(e^(4x)-1)/(e^(2)x)log((e^(2x)+1)/(e^(2x)-1))dx (t^(2))/(2)log...

    Text Solution

    |

  14. IF the primitive of sin^(-3//2) x sin^(-1//2)(x+theta) is - 2 cosec th...

    Text Solution

    |

  15. If the primitive of (sinx)/(sqrt(1+sinx))dx is -1sqrtf(x) + sqrt(2)log...

    Text Solution

    |

  16. if int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)tan^(-1)""(x^(2)+1)/(x)) = log|...

    Text Solution

    |

  17. If f(x) = underset(nrarroo)lim(x^(n)-x^(-n))/(x^(n)+x^(-n)),0ltxlt1,ni...

    Text Solution

    |

  18. If f(x) = underset(nrarroo)lim[2x+4x^(3)+...+2nx^(2n-1)] (0 lt x lt ...

    Text Solution

    |

  19. If f(x) = underset(nrarroo)lime^(xtan(1//n)log(l//n),andint(f(x))/(3sq...

    Text Solution

    |

  20. If f(x) = underset(nrarroo)limn^(2)(x^(1//n)-x^(1//(n+1))),xgt0 then i...

    Text Solution

    |