Home
Class 12
MATHS
If int(xtan^(-1))/(sqrt(1+x^(2)))dx= s...

If `int(xtan^(-1))/(sqrt(1+x^(2)))dx=`
`sqrt(1+x^(2)) f(x)+Klog(x+sqrt(x^(2)+1))+C` then

A

`f(x)=tan^(-1)x,K=-1`

B

`f(x)=tan^(-1)x,K=1`

C

`f(x)=2tan^(-1)x,K=-1`

D

`f(x)=2tan^(-1)x,K=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x \tan^{-1}(x)}{\sqrt{1+x^2}} \, dx \), we will use a substitution method and integration by parts. ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, we have: \[ dx = \sec^2(\theta) \, d\theta \] Also, we know that: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, the integral becomes: \[ I = \int \frac{\tan(\theta) \theta}{\sec(\theta)} \sec^2(\theta) \, d\theta \] This simplifies to: \[ I = \int \tan(\theta) \theta \sec(\theta) \, d\theta \] ### Step 2: Integration by Parts Now, we will use integration by parts. Let: - \( u = \theta \) (which gives \( du = d\theta \)) - \( dv = \tan(\theta) \sec(\theta) \, d\theta \) To find \( v \), we know that: \[ \int \tan(\theta) \sec(\theta) \, d\theta = \sec(\theta) + C \] Thus, \( v = \sec(\theta) \). Now applying integration by parts: \[ I = u v - \int v \, du \] Substituting the values: \[ I = \theta \sec(\theta) - \int \sec(\theta) \, d\theta \] ### Step 3: Integral of Secant The integral of \( \sec(\theta) \) is: \[ \int \sec(\theta) \, d\theta = \log |\sec(\theta) + \tan(\theta)| + C \] Thus, we have: \[ I = \theta \sec(\theta) - \log |\sec(\theta) + \tan(\theta)| + C \] ### Step 4: Back Substitution Now we substitute back \( \theta = \tan^{-1}(x) \) and \( \sec(\theta) = \sqrt{1+x^2} \): \[ I = \tan^{-1}(x) \sqrt{1+x^2} - \log |\sqrt{1+x^2} + x| + C \] ### Step 5: Comparison We need to compare this with the form: \[ \sqrt{1+x^2} f(x) + K \log(x + \sqrt{x^2 + 1}) + C \] From our result: \[ I = \tan^{-1}(x) \sqrt{1+x^2} - \log |\sqrt{1+x^2} + x| + C \] We can see that: - \( f(x) = \tan^{-1}(x) \) - \( K = -1 \) ### Final Result Thus, we conclude that: \[ f(x) = \tan^{-1}(x) \quad \text{and} \quad K = -1 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( NUMERICAL ANSWER TYPE QUESTION )|16 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS))|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLE ( LEVEL 1 ( SINGLE CORRECT ANSWER TYPE QUESTION ))|46 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int((2x-1))/(sqrt(x^(2)-x-1))dx

int_( then )^( If )(x tan^(-1)x)/(sqrt(1+x^(2)))dx=sqrt(1+x^(2))f(x)+A ln|x+sqrt(x^(2)+1)|+c

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x+1))dx

int(dx)/((1+x)sqrt(1+x-x^(2)))dx

int(2x+1)/(sqrt((x^(2)+x+1)))dx

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

int(x+1)/(sqrt(x^(2)+2x+1))dx=

int(2x+1dx)/( sqrt(x^(2)+x+1))

int(2x+1)sqrt(1-x-x^(2))dx

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-SOLVED EXAMPLE ( LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. The value of int(dx)/(sqrt(x)+root3(x)) is

    Text Solution

    |

  2. int(x^(5)+x^(4)+4x^(3)+4x^(2)+4x+4)/((x^(2)+2)^(5)) is equal to

    Text Solution

    |

  3. If int(xtan^(-1))/(sqrt(1+x^(2)))dx= sqrt(1+x^(2)) f(x)+Klog(x+sqrt(...

    Text Solution

    |

  4. The value of int (sinx)/(sin4x) dzx is

    Text Solution

    |

  5. int(dx)/((x+1)sqrt(2x^(2)+3x+4)) =K logf(x) + C them

    Text Solution

    |

  6. If int(dx)/((1+x^(2))sqrt(1-x^(2)))=F(x)andF(1)=0, then for x gt 0, f ...

    Text Solution

    |

  7. Let f (x) be a polynomial of degree three such that f(0) = 1, f(1) = 2...

    Text Solution

    |

  8. If =intlog(x+sqrt(1+x^(2)))/(sqrt(1+x^(2)))dx=g o f (x) xConst. then

    Text Solution

    |

  9. The value of int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx is

    Text Solution

    |

  10. If f(x) = (x+2)/(2x+3). Then int(f(x)/(x^(2)))^(1//2)dx is equal to (...

    Text Solution

    |

  11. The value of int(secxdx)/(sqrt(sin(2x+theta)+sintheta)) is

    Text Solution

    |

  12. If int(e^(4x)-1)/(e^(2)x)log((e^(2x)+1)/(e^(2x)-1))dx (t^(2))/(2)log...

    Text Solution

    |

  13. IF the primitive of sin^(-3//2) x sin^(-1//2)(x+theta) is - 2 cosec th...

    Text Solution

    |

  14. If the primitive of (sinx)/(sqrt(1+sinx))dx is -1sqrtf(x) + sqrt(2)log...

    Text Solution

    |

  15. if int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)tan^(-1)""(x^(2)+1)/(x)) = log|...

    Text Solution

    |

  16. If f(x) = underset(nrarroo)lim(x^(n)-x^(-n))/(x^(n)+x^(-n)),0ltxlt1,ni...

    Text Solution

    |

  17. If f(x) = underset(nrarroo)lim[2x+4x^(3)+...+2nx^(2n-1)] (0 lt x lt ...

    Text Solution

    |

  18. If f(x) = underset(nrarroo)lime^(xtan(1//n)log(l//n),andint(f(x))/(3sq...

    Text Solution

    |

  19. If f(x) = underset(nrarroo)limn^(2)(x^(1//n)-x^(1//(n+1))),xgt0 then i...

    Text Solution

    |

  20. Let f(x) = inte^(x)(x-1)(x-2)dx. Then f decreases in the interval

    Text Solution

    |