Home
Class 12
MATHS
If f(n) = log log … log x (log is repeat...

If `f_(n) = log log … log x` (log is repeated n times) then `int [x f_(1)(x) f_(2)(x) … f_(n)(x)]^(-1) dx` is equal to

A

`f_(n+1) (x) + C`

B

`(f_(n+1)(x))/(n+1)+C`

C

`nf_(n) (x) + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \left[ x f_1(x) f_2(x) \ldots f_n(x) \right]^{-1} dx \] where \( f_n(x) = \log(\log(\ldots(\log(x))\ldots)) \) (with \( n \) logs), we proceed as follows: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int \frac{1}{x f_1(x) f_2(x) \ldots f_n(x)} \, dx \] ### Step 2: Change of Variables Let \( f_n(x) = t \). Then, we need to find \( \frac{dt}{dx} \). ### Step 3: Differentiate \( f_n(x) \) Using the chain rule, we differentiate \( f_n(x) \): \[ \frac{d}{dx} f_n(x) = \frac{1}{x \cdot f_{n-1}(x)} \cdot \frac{d}{dx} f_{n-1}(x) \] Continuing this process, we find that: \[ \frac{d}{dx} f_n(x) = \frac{1}{x \cdot f_{n-1}(x) \cdot f_{n-2}(x) \ldots f_1(x)} \] ### Step 4: Substitute into the Integral Now, substituting \( dt \) into the integral, we get: \[ I = \int \frac{1}{t} dt \] ### Step 5: Integrate The integral of \( \frac{1}{t} \) is: \[ I = \log |t| + C \] ### Step 6: Substitute Back Substituting back for \( t = f_n(x) \): \[ I = \log |f_n(x)| + C \] Since \( f_n(x) = \log(\log(\ldots(\log(x))\ldots)) \) (with \( n \) logs), we can express this as: \[ I = \log \left( \log(\log(\ldots(\log(x))\ldots)) \right) + C \] ### Step 7: Final Expression Finally, we recognize that we have \( n \) logs in \( f_n(x) \), and thus: \[ I = \log \left( f_{n+1}(x) \right) + C \] where \( f_{n+1}(x) = \log(\log(\ldots(\log(x))\ldots)) \) (with \( n+1 \) logs). ### Conclusion The final result is: \[ I = f_{n+1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|30 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS))|10 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

If y = log^nx , where log^n means log log log… (repeated n time), then x log x log^2 xlog^3 x…log^(n-1) xlog^n xdy/dx is equal to

f(x)=int x log x(log x+1)dx

If f(x) = log (x – 2) – 1/x , then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=log|2x|,x!=0 then f'(x) is equal to

If f(x)=log|2x|,xne0 then f'(x) is equal to

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x)=log_(x)(ln x) then f'(x) at x=e is

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. If f(n) = log log … log x (log is repeated n times) then int [x f(1)(x...

    Text Solution

    |

  2. int3^(3^(3^(x)))3^(3^(x))3^(x)dx is equal to

    Text Solution

    |

  3. The value of int log (1-sqrt(x)) dx is

    Text Solution

    |

  4. int(x+1)/(x(1+x e^x))dx

    Text Solution

    |

  5. lf int ( sin 2x- cos 2 x) dx=1/(sqrt(2))sin (2x-a) + C, then a=

    Text Solution

    |

  6. int(x+sinx)/(1-cosx)dx=

    Text Solution

    |

  7. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  8. The function f whose graph passes through (pi//4, 0) and whose derivat...

    Text Solution

    |

  9. The function f whose graph passes through (4, - 20) and whose derivati...

    Text Solution

    |

  10. If it is know that at the point x = 1 two anti- derivatives of ...

    Text Solution

    |

  11. If int(dx)/(cos^(6)x+sin^(6)x)=tan^(-1)(-Kcot2x)+C then

    Text Solution

    |

  12. If int(sin^(2)x)/(1+sin^(2)x)dx=x-Ktan^(-1)(Mtanx)+C then

    Text Solution

    |

  13. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  14. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  15. I fintxlog(1+1/ x)dx=f(x)log(x+1)+g(x)x^2+dx+C ,t h e n

    Text Solution

    |

  16. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  17. If int(cos^(4)x)/(sin^(4)x)dx=Kcotx+Msin2x+L(x)/(2) + C then

    Text Solution

    |

  18. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  19. The value of the integral int(log(x+1)-logx)/(x(x+1))dx is

    Text Solution

    |

  20. If int cosec 2x dx = f|g(x)| + C then

    Text Solution

    |