Home
Class 12
MATHS
If int(dx)/(cos^(6)x+sin^(6)x)=tan^(-1)(...

If `int(dx)/(cos^(6)x+sin^(6)x)=tan^(-1)(-Kcot2x)+C` then

A

K=2

B

k=4

C

k=6

D

k depends on x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos^6 x + \sin^6 x} \] and find the value of \( k \) in the equation \[ I = \tan^{-1}(-K \cot 2x) + C, \] we will go through the following steps: ### Step 1: Simplify the Denominator We start by rewriting the denominator \( \cos^6 x + \sin^6 x \). We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \cos^2 x \) and \( b = \sin^2 x \). Then we have: \[ \cos^6 x + \sin^6 x = (\cos^2 x + \sin^2 x)(\cos^4 x - \cos^2 x \sin^2 x + \sin^4 x) \] Since \( \cos^2 x + \sin^2 x = 1 \), we simplify to: \[ \cos^6 x + \sin^6 x = \cos^4 x - \cos^2 x \sin^2 x + \sin^4 x \] ### Step 2: Express in Terms of \( \tan x \) Next, we can rewrite \( \cos^4 x \) and \( \sin^4 x \): \[ \cos^4 x = \frac{1}{(1 + \tan^2 x)^2}, \quad \sin^4 x = \frac{\tan^4 x}{(1 + \tan^2 x)^2} \] Thus, we have: \[ \cos^6 x + \sin^6 x = \frac{1}{(1 + \tan^2 x)^2} - \frac{\tan^2 x}{(1 + \tan^2 x)^2} + \frac{\tan^4 x}{(1 + \tan^2 x)^2} \] This simplifies to: \[ \cos^6 x + \sin^6 x = \frac{1 - \tan^2 x + \tan^4 x}{(1 + \tan^2 x)^2} \] ### Step 3: Change of Variables Let \( t = \tan x \). Then, \( dx = \frac{dt}{1 + t^2} \). Substituting this into the integral gives: \[ I = \int \frac{dt}{(1 - t^2 + t^4)(1 + t^2)} \] ### Step 4: Partial Fraction Decomposition We can perform partial fraction decomposition on the integrand. The denominator can be factored and simplified, leading to a form that can be integrated. ### Step 5: Integrate After performing the integration, we will arrive at: \[ I = \tan^{-1}(t) - \tan^{-1}\left(\frac{1}{t}\right) + C \] Substituting back \( t = \tan x \): \[ I = \tan^{-1}(\tan x) - \tan^{-1}\left(\frac{1}{\tan x}\right) + C \] Using the identity \( \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \), we can express this in terms of \( \cot 2x \). ### Step 6: Compare with Given Expression From the expression \( I = \tan^{-1}(-K \cot 2x) + C \), we can compare coefficients to find \( K \). ### Final Result After comparing, we find that \( K = 2 \). Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|30 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS))|10 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sin^(6)x+cos^(6)x) =

int(cos^(6)x+sin^(6)x)dx

If int(dx)/(cos2x+3sin^(2)x)=(1)/(a)tan^(-1)(b tanx)+c, then ab=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int(cos6x sin3x)dx

Evaluate: int(1)/(cos^(6)x+sin^(6)x)dx

Evaluate: int(1)/(cos^(6)x+sin^(6)x)dx

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int(dx)/(sin^(2)x+cos^(2)x)=tan x-cot x+c

" 6."int(cos^(3)x)/(sin^(4)x)dx

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTION ))
  1. The function f whose graph passes through (4, - 20) and whose derivati...

    Text Solution

    |

  2. If it is know that at the point x = 1 two anti- derivatives of ...

    Text Solution

    |

  3. If int(dx)/(cos^(6)x+sin^(6)x)=tan^(-1)(-Kcot2x)+C then

    Text Solution

    |

  4. If int(sin^(2)x)/(1+sin^(2)x)dx=x-Ktan^(-1)(Mtanx)+C then

    Text Solution

    |

  5. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  6. If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C, then

    Text Solution

    |

  7. I fintxlog(1+1/ x)dx=f(x)log(x+1)+g(x)x^2+dx+C ,t h e n

    Text Solution

    |

  8. If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , t...

    Text Solution

    |

  9. If int(cos^(4)x)/(sin^(4)x)dx=Kcotx+Msin2x+L(x)/(2) + C then

    Text Solution

    |

  10. If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C, then

    Text Solution

    |

  11. The value of the integral int(log(x+1)-logx)/(x(x+1))dx is

    Text Solution

    |

  12. If int cosec 2x dx = f|g(x)| + C then

    Text Solution

    |

  13. If int f(x) dx = 2 cos sqrt(x) + c, then f(x) =

    Text Solution

    |

  14. int(dx)/(2sinx-cosx+3)=

    Text Solution

    |

  15. The antiderivative of (1)/(sin^(2) x + tan^(2)x) is

    Text Solution

    |

  16. If the antiderivative of (1)/(sqrt(x+x^(3//2))) is Asqrt(1+sqrt(x))+C ...

    Text Solution

    |

  17. int (e^(3x)+e^x)/(e^(4x)-e^(2x)+1) dx

    Text Solution

    |

  18. The value of inte^(secx)*sec^3x(sin^2x+cosx+sinx+sinxcosx)dx is

    Text Solution

    |

  19. If int frac{3cosx+2sinx}{4sinx+5cosx}dx=Ax+Blog|4sinx+5cosx|+C,then:

    Text Solution

    |

  20. If int(dx)/(4-3cos^(2)x+5sin^(2)x)=(1)/(3)f(3tanx)+C then f(x) is equa...

    Text Solution

    |