Home
Class 12
MATHS
If I = int(2cos^(2)x-1)(4cos^(3)x-3cosx)...

If `I = int(2cos^(2)x-1)(4cos^(3)x-3cosx)dx=Asin5x+(1)/(2)sinx+C` then A is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (2\cos^2 x - 1)(4\cos^3 x - 3\cos x) \, dx \) and find the value of \( A \) in the expression \( I = A \sin 5x + \frac{1}{2} \sin x + C \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting \( 2\cos^2 x - 1 \) using the double angle identity: \[ 2\cos^2 x - 1 = \cos 2x \] Thus, the integral becomes: \[ I = \int \cos 2x (4\cos^3 x - 3\cos x) \, dx \] ### Step 2: Factor the expression Next, we can factor \( 4\cos^3 x - 3\cos x \): \[ 4\cos^3 x - 3\cos x = \cos x (4\cos^2 x - 3) \] Using the identity \( 4\cos^2 x - 3 = \cos 3x \), we can rewrite the integrand: \[ I = \int \cos 2x \cos x \cos 3x \, dx \] ### Step 3: Use the product-to-sum identities We can apply the product-to-sum identities: \[ \cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B)) \] Applying this to \( \cos 2x \cos 3x \): \[ \cos 2x \cos 3x = \frac{1}{2} (\cos(5x) + \cos(-x)) = \frac{1}{2} (\cos 5x + \cos x) \] Thus, we have: \[ I = \int \frac{1}{2} \cos x \left( \frac{1}{2} (\cos 5x + \cos x) \right) \, dx \] This simplifies to: \[ I = \frac{1}{4} \int \cos x \cos 5x \, dx + \frac{1}{4} \int \cos^2 x \, dx \] ### Step 4: Integrate each term 1. For \( \int \cos x \cos 5x \, dx \): \[ \int \cos x \cos 5x \, dx = \frac{1}{2} \left( \int \cos(6x) \, dx + \int \cos(4x) \, dx \right) \] This results in: \[ = \frac{1}{2} \left( \frac{\sin 6x}{6} + \frac{\sin 4x}{4} \right) \] 2. For \( \int \cos^2 x \, dx \): \[ \int \cos^2 x \, dx = \frac{1}{2} \left( x + \frac{\sin 2x}{2} \right) \] ### Step 5: Combine results Combining these results, we can express \( I \) as: \[ I = \frac{1}{4} \left( \frac{1}{12} \sin 6x + \frac{1}{8} \sin 4x \right) + \frac{1}{8} \left( x + \frac{\sin 2x}{2} \right) + C \] ### Step 6: Compare coefficients From the original expression \( I = A \sin 5x + \frac{1}{2} \sin x + C \), we can see that the coefficient of \( \sin 5x \) is \( \frac{1}{10} \) when we integrate \( \cos 5x \). Therefore, we conclude that: \[ A = \frac{1}{10} \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{\frac{1}{10}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTION ))|30 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C , then A is equal to

int(1-cosx)cos^(2)x dx=

int x^(2)sinx^(3)cos x^(3)dx

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=