Home
Class 12
MATHS
The integral intxcos^(-1)((1-x^(2))/(1+x...

The integral `intxcos^(-1)((1-x^(2))/(1+x^(2)))dx(xgt0)` is equal to

A

`-x+(1+x^(2))tan^(-1)x+C`

B

`x-(1+x^(2))cot^(-1)x+C`

C

`-x+(1+x^(2))cot^(-1)x+C`

D

`x-(1+x^(2))tan^(-1)x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int x \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) dx \quad (x > 0) \] we will use the substitution \( x = \tan \theta \). ### Step 1: Substitution Let \( x = \tan \theta \). Then, the differential \( dx \) becomes: \[ dx = \sec^2 \theta \, d\theta \] ### Step 2: Transform the Integral Now, substitute \( x \) and \( dx \) into the integral: \[ I = \int \tan \theta \cos^{-1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \sec^2 \theta \, d\theta \] Using the identity \( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos 2\theta \), we can rewrite the integral as: \[ I = \int \tan \theta \cos^{-1} (\cos 2\theta) \sec^2 \theta \, d\theta \] ### Step 3: Simplifying the Integral Since \( \cos^{-1}(\cos 2\theta) = 2\theta \) (for \( 0 \leq 2\theta \leq \pi \)), we can simplify the integral: \[ I = \int \tan \theta \cdot 2\theta \cdot \sec^2 \theta \, d\theta \] ### Step 4: Further Simplification This can be rewritten as: \[ I = 2 \int \theta \tan \theta \sec^2 \theta \, d\theta \] ### Step 5: Integration by Parts Let \( u = \theta \) and \( dv = \tan \theta \sec^2 \theta \, d\theta \). Then, we differentiate and integrate: \[ du = d\theta, \quad v = \int \tan \theta \sec^2 \theta \, d\theta = \frac{1}{2} \tan^2 \theta \] Using integration by parts: \[ I = 2 \left( \theta \cdot \frac{1}{2} \tan^2 \theta - \int \frac{1}{2} \tan^2 \theta \, d\theta \right) \] ### Step 6: Integrate \( \tan^2 \theta \) Recall that \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ \int \tan^2 \theta \, d\theta = \int (\sec^2 \theta - 1) \, d\theta = \tan \theta - \theta + C \] ### Step 7: Substitute Back Putting everything together, we have: \[ I = \theta \tan^2 \theta - \left( \frac{1}{2} (\tan \theta - \theta) \right) + C \] ### Step 8: Final Substitution Substituting back \( \theta = \tan^{-1}(x) \): \[ I = \tan^{-1}(x) \cdot \tan^2(\tan^{-1}(x)) - \frac{1}{2} \left( x - \tan^{-1}(x) \right) + C \] Since \( \tan^2(\tan^{-1}(x)) = x^2 \): \[ I = \tan^{-1}(x) \cdot x^2 - \frac{1}{2}(x - \tan^{-1}(x)) + C \] ### Final Result Thus, the integral evaluates to: \[ I = x^2 \tan^{-1}(x) - \frac{x}{2} + \frac{1}{2} \tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise EXERCISE ( NUMERICAL ANSWER TYPE QUESTION )|15 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The integral int(1)/((1+x^(2))sqrt(1-x^(2)))dx is equal to

The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

By Simpson rule taking n=4, the value of the integral int _(0)^(1)(1)/(1+x^(2))dx is equal to

The value of definite integral int_(0)^(oo)In(x+(1)/(x))(dx)/(1+x^(2)) is equal to

The value of definite integral int _(0)^(oo) (dx )/((1+ x^(9)) (1+ x^(2))) equal to:

Evaluate the integrals int_(0)^(1)(x)/(x^(2)+1)dx

Evaluate the following definite integrals: int_(0)^(1)x sqrt((1-x^(2))/(1+x^(2)))dx

lim_(ntooo) n^(2)(x^(1//n)-x^(1//(n+1))),xgt0, is equal to

MCGROW HILL PUBLICATION-INDEFINITE INTEGRATION-QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS
  1. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  2. int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    Text Solution

    |

  3. The integral intxcos^(-1)((1-x^(2))/(1+x^(2)))dx(xgt0) is equal to

    Text Solution

    |

  4. int ((sin^2xcos^2x)/(sin^3x+cos^3x))dx=

    Text Solution

    |

  5. If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^...

    Text Solution

    |

  6. The integral int(dx)/(x^(2)(x^(4)+1)^(3//4)) equal

    Text Solution

    |

  7. The integral I = int (dx)/((x+1)^(3//4)(x-2)^(5//4)) is equal to

    Text Solution

    |

  8. if I=int(log(t+sqrt(1+t^2)))/sqrt(1+t^2)dt=1/2(g(t))^2+c then g(2) is ...

    Text Solution

    |

  9. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  10. The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C ...

    Text Solution

    |

  11. If int(1)/(cos^(2)xsqrt(2 sin2x))dx=(tanx)^(A)+C(tanx)^(B)+k, where k...

    Text Solution

    |

  12. Evaluate: intsqrt(1+2cotx(cotx+cosecx))dx

    Text Solution

    |

  13. I ff((3x-4)/(3x+4))=x+2, x!=4/3,andintf(x)dx=Alog|1-x|+B x+C then orde...

    Text Solution

    |

  14. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  15. If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - ...

    Text Solution

    |

  16. if f ((x- 4 ) /(x + 2 )) = 2 x + 1 , (x in R - { 1, - 2 }) , ...

    Text Solution

    |

  17. int\ (sin^2 x cos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 \ d...

    Text Solution

    |

  18. If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C, where C is a constant ...

    Text Solution

    |

  19. int(3x^(13)+2x^(11))/((2x^4+3x^2+1)^4)dx

    Text Solution

    |

  20. If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C,for a suitable chose...

    Text Solution

    |