Home
Class 12
MATHS
int \ (2^(x+1)-5^(x-1))/(1 0^x)dx...

`int \ (2^(x+1)-5^(x-1))/(1 0^x)dx`

A

`(1)/(5log2)2^(x+1)-(2)/(log5)5^(x-1)+C`

B

`(2(x+1))/(5^(x+1))-(x)/(2^(x))+C`

C

`(2(x+1))/(5^(x+1))+(x)/(2^(x))+C`

D

`(1)/(5log2)2^(2-x)+(2)/(log5)5^(-x)+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(2^(x+1)-5^(x-1))/(10^(x))dx

The value of int_0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

int_(0)^(1)(cot^(-1)x)/(1+x^(2))dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=

int_(0)^(1)(e^(x)*x)/((1+x)^(2))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

int_(0)^(1)(log(1+x))/(1+x^(2))dx

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_(0)^(1)(x-1)/(x^(2)-1)dx