Home
Class 12
MATHS
The integral int(dx)/((a^(2)-b^(2)x^(2))...

The integral `int(dx)/((a^(2)-b^(2)x^(2))^(3//2))` equals

A

`(x)/(sqrt(a^(2)-b^(2)x^(2)))+C`

B

`(x)/(a^2(sqrt(a^(2)-b^(2)x^(2))))+C`

C

`(ax)/(sqrt(a^(2)-b^(2)x^(2)))+C`

D

`(1)/(a^(2)sqrt(a^(2)-b^(2)x^(2)))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}}, \] we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}}. \] ### Step 2: Substitute Let \( t = a^2 - b^2 x^2 \). Then, differentiating both sides gives: \[ dt = -2b^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{-2b^2 x}. \] From our substitution, we can express \( x \) in terms of \( t \): \[ x^2 = \frac{a^2 - t}{b^2} \quad \Rightarrow \quad x = \sqrt{\frac{a^2 - t}{b^2}} = \frac{\sqrt{a^2 - t}}{b}. \] ### Step 3: Substitute \( dx \) in the Integral Now we substitute \( dx \) and \( x \) back into the integral: \[ I = \int \frac{1}{t^{3/2}} \cdot \frac{dt}{-2b^2 \cdot \frac{\sqrt{a^2 - t}}{b}}. \] This simplifies to: \[ I = \int \frac{-b}{2b^2} \cdot \frac{dt}{t^{3/2} \sqrt{a^2 - t}} = \frac{-1}{2b} \int \frac{dt}{t^{3/2} \sqrt{a^2 - t}}. \] ### Step 4: Solve the Integral The integral \[ \int \frac{dt}{t^{3/2} \sqrt{a^2 - t}} \] can be solved using a standard integral formula. The result is: \[ \int \frac{dt}{t^{3/2} \sqrt{a^2 - t}} = -\frac{2}{\sqrt{a^2 - t}}. \] ### Step 5: Substitute Back Now substituting back into our expression for \( I \): \[ I = \frac{-1}{2b} \left(-\frac{2}{\sqrt{a^2 - t}}\right) + C. \] This simplifies to: \[ I = \frac{1}{b \sqrt{a^2 - t}} + C. \] Substituting \( t = a^2 - b^2 x^2 \) back in gives: \[ I = \frac{1}{b \sqrt{a^2 - (a^2 - b^2 x^2)}} + C = \frac{1}{b \sqrt{b^2 x^2}} + C = \frac{1}{b |bx|} + C. \] ### Final Result Thus, the integral evaluates to: \[ I = \frac{x}{a^2 \sqrt{a^2 - b^2 x^2}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((x^(2)+a^(2))(x^(2)+b^(2))) equals.

Integrate : int(x)/(a^(2)+x^(2))dx

integrate int(2x+2)/(x^(2)+2x)dx

If the value of the integral int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2)) dx is (k)/(6) then k is equal to :

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

integrate int(dx)/(sqrt(3-2x-x^(2)))

The integral int(2x-3)/((x^(2)+x+1)^(2)).dx is equal to

The integral int(x)/(2-x^(2)+sqrt(2-x^(2)))dx equals

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)