Home
Class 12
MATHS
If (1-x^(9))/(x(1+x^(9)))dx=Alog|x|+Blog...

If `(1-x^(9))/(x(1+x^(9)))dx=Alog|x|+Blog|1+x^(9)|+C` then the ratio A : B is equal to

A

`-2 : 9`

B

`2 : 9`

C

`9 : -2`

D

`9 : 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 - x^9}{x(1 + x^9)} \, dx, \] we can break it down into two separate integrals: \[ \int \frac{1}{x(1 + x^9)} \, dx - \int \frac{x^9}{x(1 + x^9)} \, dx. \] This simplifies to: \[ \int \frac{1}{x(1 + x^9)} \, dx - \int \frac{x^8}{1 + x^9} \, dx. \] ### Step 1: Solve the first integral For the first integral, we can use the substitution \( t = 1 + x^9 \). Then, we differentiate: \[ dt = 9x^8 \, dx \implies dx = \frac{dt}{9x^8}. \] Also, from our substitution, we have \( x^8 = (t - 1)^{\frac{8}{9}} \). Substituting these into the first integral gives: \[ \int \frac{1}{x(1 + x^9)} \, dx = \int \frac{1}{x t} \cdot \frac{dt}{9x^8} = \frac{1}{9} \int \frac{1}{x^9 t} \, dt. \] ### Step 2: Solve the second integral For the second integral: \[ \int \frac{x^8}{1 + x^9} \, dx, \] we can again use the substitution \( t = 1 + x^9 \) and \( dt = 9x^8 \, dx \), leading to: \[ \int \frac{x^8}{1 + x^9} \, dx = \frac{1}{9} \int \frac{dt}{t} = \frac{1}{9} \log |t| + C = \frac{1}{9} \log |1 + x^9| + C. \] ### Step 3: Combine results Now we can combine the results of both integrals: \[ \int \frac{1 - x^9}{x(1 + x^9)} \, dx = \frac{1}{9} \log |x| - \frac{1}{9} \log |1 + x^9| + C. \] ### Step 4: Express in the required form This can be rewritten as: \[ \frac{1}{9} \log \left| \frac{x}{1 + x^9} \right| + C. \] ### Step 5: Identify coefficients From the given expression \[ A \log |x| + B \log |1 + x^9| + C, \] we can identify: - \( A = \frac{1}{9} \) - \( B = -\frac{1}{9} \) ### Step 6: Find the ratio \( A : B \) Now, we need to find the ratio \( A : B \): \[ \text{Ratio} = \frac{A}{B} = \frac{\frac{1}{9}}{-\frac{1}{9}} = -1. \] Thus, the ratio \( A : B \) is \( 1 : -1 \). ### Final Answer The ratio \( A : B \) is equal to \( 9 : -2 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS.AIEEE/JEE MAIN PAPERS|35 Videos
  • HYPERBOLA

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos

Similar Questions

Explore conceptually related problems

int(x^8dx)/((1+x^(9)))

If int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c, then

If : int(1-x^(7))/(x(1+x^(7)))dx=a.log|x|+b.log|x^(7)+1|+c, then : (a, b)-=

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

int_(0)^(1)x(1-x)^(9y)dx

int (x^(1/3))/((1+x^(4/3))^(9))dx

int (x^(1/3))/((1+x^(4/3))^(9))dx

int_(0)^(1)(1-x)^(9)dx=

int(x^(5))/(1-x^(9))dx is equal to

int(x^(2)-1)/(x^(3)-3x-9)dx