Home
Class 12
MATHS
The value of int(0)^(1) (xdx)/( (x^(2) +...

The value of `int_(0)^(1) (xdx)/( (x^(2) +1)^(2) )` is

A

`1/2`

B

`1`

C

`1/3`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x \, dx}{(x^2 + 1)^2} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{1} \frac{x \, dx}{(x^2 + 1)^2} \] ### Step 2: Use Substitution We will use the substitution \( t = x^2 + 1 \). Then, we find the differential \( dt \): \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] ### Step 3: Change the Limits of Integration When \( x = 0 \): \[ t = 0^2 + 1 = 1 \] When \( x = 1 \): \[ t = 1^2 + 1 = 2 \] So, the limits change from \( x = 0 \) to \( x = 1 \) into \( t = 1 \) to \( t = 2 \). ### Step 4: Substitute in the Integral Now we substitute \( x \) and \( dx \) in the integral: \[ I = \int_{1}^{2} \frac{x}{t^2} \cdot \frac{dt}{2x} \] The \( x \) cancels out: \[ I = \int_{1}^{2} \frac{1}{2t^2} \, dt \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{1}{2} \int_{1}^{2} t^{-2} \, dt \] The integral of \( t^{-2} \) is: \[ \int t^{-2} \, dt = -\frac{1}{t} \] Thus, \[ I = \frac{1}{2} \left[ -\frac{1}{t} \right]_{1}^{2} \] ### Step 6: Evaluate the Limits Now we evaluate the limits: \[ I = \frac{1}{2} \left( -\frac{1}{2} + 1 \right) = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{4} \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{1}{4}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions|62 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)2xdx

The value of int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) is equal to

Knowledge Check

  • int_(0)^(oo) (xdx)/((1+x) (1+x^(2)))=

    A
    `(pi)/(4)`
    B
    `(pi)/(2)`
    C
    `pi`
    D
    none
  • The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

    A
    `1-(pi)/4`
    B
    `(pi)/4-1`
    C
    `1-(pi)/2`
    D
    `0`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int_(0)^(1)(xdx)/(3+4x+x^(2))

    Find the value of int_(0)^(1)log xdx

    int(xdx)/((1-x^(2))^(3/2))

    The value of int_(0)^(1)x^(6)sin^(-1)xdx=

    int_(1)^(2)xdx

    Evaluate : int_(0)^(∞)( e^xdx)/ ( 1 + e^(2x) )