Home
Class 12
MATHS
If int(0)^(pi//2) ( cos x dx)/( 6-5 sin ...

If `int_(0)^(pi//2) ( cos x dx)/( 6-5 sin x + sin^(2) x)= log K` then `K` is equal to

A

`(2)/(3)`

B

`(4)/(3)`

C

`(1)/(3)`

D

`(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{6 - 5 \sin x + \sin^2 x} \, dx \] we will use the substitution \( \sin x = t \). This gives us \( \cos x \, dx = dt \). The limits of integration change as follows: when \( x = 0 \), \( t = \sin(0) = 0 \) and when \( x = \frac{\pi}{2} \), \( t = \sin\left(\frac{\pi}{2}\right) = 1 \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{1}{6 - 5t + t^2} \, dt \] Next, we will simplify the denominator \( 6 - 5t + t^2 \). We can complete the square: \[ t^2 - 5t + 6 = (t - \frac{5}{2})^2 - \frac{25}{4} + 6 = (t - \frac{5}{2})^2 - \frac{25}{4} + \frac{24}{4} = (t - \frac{5}{2})^2 - \frac{1}{4} \] Now, we can rewrite the integral: \[ I = \int_{0}^{1} \frac{1}{(t - \frac{5}{2})^2 - \left(\frac{1}{2}\right)^2} \, dt \] This integral resembles the standard form: \[ \int \frac{1}{x^2 - a^2} \, dx = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C \] In our case, let \( x = t - \frac{5}{2} \) and \( a = \frac{1}{2} \). Therefore, we have: \[ I = \frac{1}{2 \cdot \frac{1}{2}} \int_{0}^{1} \frac{1}{(t - \frac{5}{2})^2 - \left(\frac{1}{2}\right)^2} \, dt = \int_{0}^{1} \frac{1}{(t - \frac{5}{2})^2 - \left(\frac{1}{2}\right)^2} \, dt \] Now we evaluate the integral: \[ I = \left[ \log \left| \frac{t - \frac{5}{2} - \frac{1}{2}}{t - \frac{5}{2} + \frac{1}{2}} \right| \right]_{0}^{1} \] Calculating the limits: 1. For \( t = 1 \): \[ \log \left| \frac{1 - \frac{5}{2} - \frac{1}{2}}{1 - \frac{5}{2} + \frac{1}{2}} \right| = \log \left| \frac{1 - 3}{1 - 2} \right| = \log \left| \frac{-2}{-1} \right| = \log 2 \] 2. For \( t = 0 \): \[ \log \left| \frac{0 - \frac{5}{2} - \frac{1}{2}}{0 - \frac{5}{2} + \frac{1}{2}} \right| = \log \left| \frac{-3}{-2} \right| = \log \frac{3}{2} \] Thus, we have: \[ I = \log 2 - \log \frac{3}{2} = \log \frac{2}{\frac{3}{2}} = \log \frac{4}{3} \] Since we are given that \( I = \log K \), we can equate: \[ \log K = \log \frac{4}{3} \] Therefore, we find: \[ K = \frac{4}{3} \] ### Final Answer: \[ K = \frac{4}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 ) Single Correct Answer Type Questions|62 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 ) Single Correct Answer Type Questions|33 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))((cos x)/(6-5sin x+sin^(2)x))dx

int_(pi//4)^(pi//2) cos 2 x log sin x " " dx=

Compute the integrals : (a) int_(0)^(pi//2) (cos x dx)/( 6 - 5 sin x + sin^(2) x) (b) int _(0)^(pi//2) (dx)/( 2 + cos x)

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

int_(0)^(pi//2) (sin x cos x) / ((1 + 2 sin x ) ( 1+ sin x))dx =

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int_(0)^( pi/2)ln(sin^(2)x cos x)dx

If int_(0)^((pi)/(3))(cos x)/(3+4sin x)dx=k log((3+2sqrt(3))/(3)) then k is equal to