Home
Class 12
MATHS
The value of int(0)^(1) x^(3) (1- x)^(11...

The value of `int_(0)^(1) x^(3) (1- x)^(11) dx` is equal to

A

`(1)/( 11) + (3)/(12) + (3)/( 13) + (1)/( 14)`

B

`- (1)/( 11) + (3)/( 12) - (3)/( 13) + (1)/( 14)`

C

`(8)/( 13)`

D

`(1)/(11) - (3)/( 12) + (3)/(14) - (1)/( 14)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x^{3} (1 - x)^{11} \, dx \), we can use the property of definite integrals that allows us to substitute \( x \) with \( 1 - x \). ### Step-by-Step Solution: 1. **Set Up the Integral:** \[ I = \int_{0}^{1} x^{3} (1 - x)^{11} \, dx \] 2. **Use the Substitution Property:** By substituting \( x \) with \( 1 - x \), we have: \[ I = \int_{0}^{1} (1 - x)^{3} x^{11} \, dx \] 3. **Combine the Two Integrals:** Now we can express \( I \) as: \[ I = \int_{0}^{1} x^{3} (1 - x)^{11} \, dx + \int_{0}^{1} (1 - x)^{3} x^{11} \, dx \] This gives us: \[ 2I = \int_{0}^{1} \left( x^{3} (1 - x)^{11} + (1 - x)^{3} x^{11} \right) \, dx \] 4. **Simplify the Expression Inside the Integral:** The expression can be simplified using the binomial expansion: \[ (1 - x)^{11} = \sum_{k=0}^{11} \binom{11}{k} (-x)^{k} = \sum_{k=0}^{11} \binom{11}{k} (-1)^{k} x^{k} \] Thus: \[ x^{3} (1 - x)^{11} + (1 - x)^{3} x^{11} = x^{3} \sum_{k=0}^{11} \binom{11}{k} (-1)^{k} x^{k} + (1 - x)^{3} \sum_{j=0}^{11} \binom{11}{j} (-1)^{j} x^{j} \] 5. **Integrate Each Term:** Now we can integrate term by term: \[ 2I = \int_{0}^{1} \left( x^{3} (1 - x)^{11} + (1 - x)^{3} x^{11} \right) \, dx \] This results in: \[ 2I = \int_{0}^{1} (x^{3} (1 - x)^{11} + x^{11} (1 - x)^{3}) \, dx \] 6. **Evaluate the Integral:** We can evaluate the integral using the Beta function: \[ \int_{0}^{1} x^{m} (1 - x)^{n} \, dx = \frac{\Gamma(m + 1) \Gamma(n + 1)}{\Gamma(m + n + 2)} \] For our case: \[ I = \frac{\Gamma(4) \Gamma(12)}{\Gamma(16)} = \frac{3! \cdot 11!}{15!} \] 7. **Calculate the Values:** \[ \Gamma(4) = 3! = 6, \quad \Gamma(12) = 11! = 39916800, \quad \Gamma(16) = 15! = 1307674368000 \] Thus: \[ I = \frac{6 \cdot 39916800}{1307674368000} = \frac{239500800}{1307674368000} = \frac{1}{5460} \] 8. **Final Result:** Therefore, the value of the integral is: \[ I = \frac{1}{5460} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|16 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) x^(2) (1- x)^(9) dx is

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

The value of int_(0)^(1)x(1-x)^(n)backslash dx

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is

The value of int_(0)^(1) "max" (e^(x) , e^(1-x) ) dx equals

Find the value of int_(0)^(1)x(1-x)^(n)dx