Home
Class 12
MATHS
If the points(a^3/(a-1),(a^2-3)/(a-1)), ...

If the points`(a^3/(a-1),(a^2-3)/(a-1))`, `(b^3/(b-1),(b^2-3)/(b-1))`, `(c^3/(c-1),(c^2-3)/(c-1))` are collinear for 3 distinct values `a,b,c` and `a!=1, b!=1, c!=1`, then find the value of `abc-(ab+bc+ca)+3(a+b+c)`.

A

`bc+ca+ab+abc=0`

B

`a+b+c=abc`

C

`bc+ca+ab=abc`

D

`bc+ca+ab-abc=3(a+b+c)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|25 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT - BASED) SINGLE CORRECT ANSWER TYPE QUESTIONS|15 Videos
  • CARTESIAN SYSTEM OF RECTANGULAR COORDINATES AND STRAIGHT LINES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1) SINGLE CORRECT ANSWER TYPE QUESTIONS|65 Videos
  • AREA BY INTEGRATION

    MCGROW HILL PUBLICATION|Exercise Question from Previous Years. B-Architecture Entrance Examination Papers|12 Videos
  • CIRCLES AND SYSTEMS OF CIRCLES

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|17 Videos

Similar Questions

Explore conceptually related problems

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1))((b^(3))/(b-1),(b^(2)-3)/(b-1)),((c^(3))/(c-1),(c^(2)-3)/(c-1)) are a!=1,b!=1,c!=1, then find the value of abc-(ab+bc+ca)+3(a+b+c)

If a=-1, b=-2/3, c=-3/4 , then the value of a+b+c is

Knowledge Check

  • If a+b+c = 4 and ab + bc + ca = 1 , then the value of a^(3) + b^(3) + c^(3) - 3abc is :

    A
    50
    B
    60
    C
    52
    D
    47
  • If a + b + c =8 , then find the value of (a - 4)^(3) + (b-3)^(3) + (c - 1)^(3) - 3(a-4)(b-3)(c-1) .

    A
    2
    B
    4
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1)),((b^(3))/(b-1),(b^(3)-3)/(b-1)) and ((c^(3))/(c-1),(c^(3)-3)/(c-1)) where a,b,c are different from 1 lie on the line lx+my+n=0a+b+c=(m)/(l)ab+bc+ca+(n)/(l)=0abc=((3m+n))/(l)abc-(bc+ca+ab)+3(a+b+c)=0

    If a-b=1, then the value of a^(3)-b^(3)-3ab will be -3(b)-1(c)1(d)3

    If (a-b)=3,(b-c)=5 and (c-a)=1 then the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) is?

    If a+b+c=2, ab+bc+ca=-1 and abc=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

    If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

    If the points A(-1,-4),B(b,c)and C(5,-1) are collinear and 3b + c = 4, find the values of b and c.