Home
Class 12
MATHS
A unit vector c perpendicular to a=i-j a...

A unit vector c perpendicular to `a=i-j` and coplanar with a and `b=i+k` is

A

`1/sqrt(16)(i+j+2k)`

B

`1/sqrt(3)(i-j+k)`

C

`1/sqrt(3)(i+j-k)`

D

`1/sqrt(6)(i-j+2k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector \( \mathbf{c} \) that is perpendicular to \( \mathbf{a} = \mathbf{i} - \mathbf{j} \) and coplanar with \( \mathbf{a} \) and \( \mathbf{b} = \mathbf{i} + \mathbf{k} \), we can follow these steps: ### Step 1: Define the vector \( \mathbf{c} \) Let \( \mathbf{c} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \). ### Step 2: Use the perpendicular condition Since \( \mathbf{c} \) is perpendicular to \( \mathbf{a} \), we can use the dot product: \[ \mathbf{c} \cdot \mathbf{a} = 0 \] Calculating the dot product: \[ (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \cdot (\mathbf{i} - \mathbf{j}) = x - y = 0 \] This gives us our first equation: \[ x - y = 0 \quad \Rightarrow \quad x = y \] ### Step 3: Use the coplanarity condition The vectors \( \mathbf{a}, \mathbf{b}, \) and \( \mathbf{c} \) are coplanar if the scalar triple product is zero: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \] Calculating \( \mathbf{b} \times \mathbf{c} \): \[ \mathbf{b} = \mathbf{i} + \mathbf{k} \quad \Rightarrow \quad \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 0 & 1 \\ y & z \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 0 \\ x & y \end{vmatrix} \] \[ = \mathbf{i}(0 \cdot z - 1 \cdot y) - \mathbf{j}(1 \cdot z - 1 \cdot x) + \mathbf{k}(1 \cdot y - 0 \cdot x) \] \[ = -y \mathbf{i} - (z - x) \mathbf{j} + y \mathbf{k} \] Now, we take the dot product with \( \mathbf{a} \): \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (1)(-y) + (-1)(-(z - x)) + (0)(y) = -y + z - x \] Setting this equal to zero gives us: \[ -y + z - x = 0 \quad \Rightarrow \quad z = x + y \] ### Step 4: Substitute \( y \) with \( x \) Since \( x = y \), we can substitute \( y \) in the equation: \[ z = x + x = 2x \] ### Step 5: Express \( \mathbf{c} \) in terms of \( x \) Now we can express \( \mathbf{c} \): \[ \mathbf{c} = x \mathbf{i} + x \mathbf{j} + 2x \mathbf{k} = x(\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \] ### Step 6: Normalize \( \mathbf{c} \) To make \( \mathbf{c} \) a unit vector, we need to set its magnitude equal to 1: \[ |\mathbf{c}| = \sqrt{x^2 + x^2 + (2x)^2} = \sqrt{x^2 + x^2 + 4x^2} = \sqrt{6x^2} = \sqrt{6} |x| \] Setting this equal to 1: \[ \sqrt{6} |x| = 1 \quad \Rightarrow \quad |x| = \frac{1}{\sqrt{6}} \] Thus, we can take \( x = \frac{1}{\sqrt{6}} \). ### Step 7: Final expression for \( \mathbf{c} \) Substituting \( x \) back into the expression for \( \mathbf{c} \): \[ \mathbf{c} = \frac{1}{\sqrt{6}} \left( \mathbf{i} + \mathbf{j} + 2\mathbf{k} \right) \] ### Final Answer The unit vector \( \mathbf{c} \) is: \[ \mathbf{c} = \frac{1}{\sqrt{6}} \mathbf{i} + \frac{1}{\sqrt{6}} \mathbf{j} + \frac{2}{\sqrt{6}} \mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

A unit vector c perpendicular to a and coplanar with a and b, a=i+j+k, b=i+2j is given by

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

A unit vector perpendicular to 3i+4j" and "i-j+k is

The unit vector perpendicular to both the vectors a=hat i+hat j+hat k and b=2hat i-hat j+3hat k and making an acute angle with the vector k is

A unit vector which is perpendicular to hat i+2hat j-2hat k and to -hat i+2hat j+2hat k is