Home
Class 12
MATHS
If a=i+j+k" and "b=i-j+2k then the proje...

If `a=i+j+k" and "b=i-j+2k` then the projection of a on b is given by

A

`1/2(i-j+2k)`

B

`1/3(i+j+k)`

C

`1/3(i-j-k)`

D

`1/3(i-j+2k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **a** on vector **b**, we will use the formula for the projection of one vector onto another. The formula is given by: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} \] ### Step 1: Identify the vectors Given: \[ \mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \] \[ \mathbf{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \] ### Step 2: Calculate the dot product \(\mathbf{a} \cdot \mathbf{b}\) The dot product is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (1)(1) + (1)(-1) + (1)(2) \] Calculating each term: \[ = 1 - 1 + 2 = 2 \] ### Step 3: Calculate the magnitude squared of vector \(\mathbf{b}\) The magnitude squared of vector \(\mathbf{b}\) is given by: \[ |\mathbf{b}|^2 = (1)^2 + (-1)^2 + (2)^2 \] Calculating this: \[ = 1 + 1 + 4 = 6 \] ### Step 4: Substitute into the projection formula Now we substitute the values into the projection formula: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{2}{6} \mathbf{b} \] This simplifies to: \[ = \frac{1}{3} \mathbf{b} \] ### Step 5: Substitute \(\mathbf{b}\) back into the equation Now we substitute \(\mathbf{b} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}\): \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{1}{3} (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \] Distributing \(\frac{1}{3}\): \[ = \frac{1}{3} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{2}{3} \mathbf{k} \] ### Final Result Thus, the projection of vector **a** on vector **b** is: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{1}{3} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{2}{3} \mathbf{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If vec a=hat i-hat j and vec b=-hat j+hat k find the projection of vec a on vec b

Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the scalar projection of a on b?

If u=i+j-k, v=2i+j+k" and "w=i+j+2k then the magnitude of projection of u times v on w is given by

If vec a=2hat i+hat j+hat k,vec b=3hat i-4hat j+2hat k and vec c=hat i-2hat j+2hat k then the projection of vec a+vec b is

If vec a=2hat i+3hat j+6hat k and vec b=3hat i+4hat j , then (projection of vec(a) on vec(b)//("projection of b on a") )

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :