Home
Class 12
MATHS
If a, b, c are unit vectors such that a-...

If a, b, c are unit vectors such that `a-b+c=0` then `c*a` is equal to

A

`3/2`

B

`-1/2`

C

`1/3`

D

`-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the unit vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \): \[ \mathbf{a} - \mathbf{b} + \mathbf{c} = 0 \] From this, we can rearrange to express \( \mathbf{c} \): \[ \mathbf{c} = \mathbf{b} - \mathbf{a} \] Next, we need to find the dot product \( \mathbf{c} \cdot \mathbf{a} \): \[ \mathbf{c} \cdot \mathbf{a} = (\mathbf{b} - \mathbf{a}) \cdot \mathbf{a} \] Using the distributive property of the dot product, we can expand this: \[ \mathbf{c} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{a} \] Since \( \mathbf{a} \) is a unit vector, we know that: \[ \mathbf{a} \cdot \mathbf{a} = 1 \] Thus, we can substitute this into our equation: \[ \mathbf{c} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} - 1 \] Now, we need to find \( \mathbf{b} \cdot \mathbf{a} \). To do this, we can take the dot product of the original equation \( \mathbf{a} - \mathbf{b} + \mathbf{c} = 0 \) with \( \mathbf{b} \): \[ (\mathbf{a} - \mathbf{b} + \mathbf{c}) \cdot \mathbf{b} = 0 \] Expanding this gives: \[ \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{b} = 0 \] Since \( \mathbf{b} \) is also a unit vector, we have: \[ \mathbf{b} \cdot \mathbf{b} = 1 \] So we can rewrite the equation as: \[ \mathbf{a} \cdot \mathbf{b} - 1 + \mathbf{c} \cdot \mathbf{b} = 0 \] This simplifies to: \[ \mathbf{c} \cdot \mathbf{b} = 1 - \mathbf{a} \cdot \mathbf{b} \] Now, we can also take the dot product of the original equation with \( \mathbf{c} \): \[ (\mathbf{a} - \mathbf{b} + \mathbf{c}) \cdot \mathbf{c} = 0 \] Expanding this gives: \[ \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{c} = 0 \] Since \( \mathbf{c} \) is a unit vector, we have: \[ \mathbf{c} \cdot \mathbf{c} = 1 \] Thus, we can rewrite the equation as: \[ \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c} + 1 = 0 \] Rearranging gives: \[ \mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} - 1 \] Now we have two equations: 1. \( \mathbf{c} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} - 1 \) 2. \( \mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} - 1 \) From equation 1, substituting \( \mathbf{b} \cdot \mathbf{c} = 1 - \mathbf{a} \cdot \mathbf{b} \) into equation 2, we can find \( \mathbf{c} \cdot \mathbf{a} \): Substituting \( \mathbf{b} \cdot \mathbf{c} \): \[ \mathbf{c} \cdot \mathbf{a} = (1 - \mathbf{a} \cdot \mathbf{b}) - 1 \] This simplifies to: \[ \mathbf{c} \cdot \mathbf{a} = -\mathbf{a} \cdot \mathbf{b} \] Now, substituting back into our earlier equation gives: \[ 2(\mathbf{c} \cdot \mathbf{a}) = -2 + \mathbf{a} \cdot \mathbf{b} + (1 - \mathbf{a} \cdot \mathbf{b}) \] This leads us to: \[ 2(\mathbf{c} \cdot \mathbf{a}) = -1 \] Thus: \[ \mathbf{c} \cdot \mathbf{a} = -\frac{1}{2} \] Therefore, the final answer is: \[ \mathbf{c} \cdot \mathbf{a} = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are unit vectors such that a+2b+2c=0," then "abs(a times c) is equal to

If a, b, c are three unit vectors such that a+b+c=0 . Where 0 is null vector, then a.b+a.c+c.a is

If a,b,c are vectors such that a*b=0 and a+b=c

If vec a,vec b, and vec c are unit vectors such that vec a+vec b+vec c=0, then find the value of vec a*vec b+vec b*vec c+vec c*vec a