Home
Class 12
MATHS
The angle between a+2b" and "a-3b if abs...

The angle between `a+2b" and "a-3b` if `abs(a)=1, abs(b)=2` and angle between a and b is `60^(@)` is

A

an acute angle

B

`cos^(-1)""(-24)/(sqrt(21)sqrt(31))`

C

`cos^(-1)""(24)/(sqrt(21)sqrt(31))`

D

`cos^(-1)""-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{a} + 2\mathbf{b} \) and \( \mathbf{a} - 3\mathbf{b} \), given that \( |\mathbf{a}| = 1 \), \( |\mathbf{b}| = 2 \), and the angle between \( \mathbf{a} \) and \( \mathbf{b} \) is \( 60^\circ \), we can follow these steps: ### Step 1: Calculate the dot product of the vectors We start by calculating the dot product of the vectors \( \mathbf{x} = \mathbf{a} + 2\mathbf{b} \) and \( \mathbf{y} = \mathbf{a} - 3\mathbf{b} \). \[ \mathbf{x} \cdot \mathbf{y} = (\mathbf{a} + 2\mathbf{b}) \cdot (\mathbf{a} - 3\mathbf{b}) \] Using the distributive property of the dot product, we have: \[ \mathbf{x} \cdot \mathbf{y} = \mathbf{a} \cdot \mathbf{a} - 3\mathbf{a} \cdot \mathbf{b} + 2\mathbf{b} \cdot \mathbf{a} - 6\mathbf{b} \cdot \mathbf{b} \] ### Step 2: Substitute known values We know that \( \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = 1^2 = 1 \) and \( \mathbf{b} \cdot \mathbf{b} = |\mathbf{b}|^2 = 2^2 = 4 \). The dot product \( \mathbf{a} \cdot \mathbf{b} \) can be calculated using the formula: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(60^\circ) = 1 \cdot 2 \cdot \frac{1}{2} = 1 \] Now substituting these values into the dot product: \[ \mathbf{x} \cdot \mathbf{y} = 1 - 3(1) + 2(1) - 6(4) \] \[ = 1 - 3 + 2 - 24 = -24 \] ### Step 3: Calculate the magnitudes of the vectors Next, we need to find the magnitudes of \( \mathbf{x} \) and \( \mathbf{y} \). #### Magnitude of \( \mathbf{x} = \mathbf{a} + 2\mathbf{b} \): \[ |\mathbf{x}|^2 = (\mathbf{a} + 2\mathbf{b}) \cdot (\mathbf{a} + 2\mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + 4\mathbf{b} \cdot \mathbf{b} + 4\mathbf{a} \cdot \mathbf{b} \] \[ = 1 + 4(4) + 4(1) = 1 + 16 + 4 = 21 \] \[ |\mathbf{x}| = \sqrt{21} \] #### Magnitude of \( \mathbf{y} = \mathbf{a} - 3\mathbf{b} \): \[ |\mathbf{y}|^2 = (\mathbf{a} - 3\mathbf{b}) \cdot (\mathbf{a} - 3\mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + 9\mathbf{b} \cdot \mathbf{b} - 6\mathbf{a} \cdot \mathbf{b} \] \[ = 1 + 9(4) - 6(1) = 1 + 36 - 6 = 31 \] \[ |\mathbf{y}| = \sqrt{31} \] ### Step 4: Use the cosine formula to find the angle Now, we can use the formula for the cosine of the angle \( \theta \) between the two vectors: \[ \cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|} \] \[ \cos \theta = \frac{-24}{\sqrt{21} \cdot \sqrt{31}} = \frac{-24}{\sqrt{651}} \] ### Step 5: Find the angle \( \theta \) To find \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-24}{\sqrt{651}}\right) \] This gives us the angle between the vectors \( \mathbf{a} + 2\mathbf{b} \) and \( \mathbf{a} - 3\mathbf{b} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Angle between vec(a) and vec(b) is 60^(@) then

If (|a+b|)/(|a-b|)=1 , then the angle between a and b is

If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle between a and b is

If A.B=AxxB , then angle between A and B is

The angle between 3(a xx b) and (1)/(2)(b-(a.b)) is

If |A|=2 and |B|=4 and angle between then is 60^(@) then |A-B|

If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to

If angle between vec a and vec b is pi/3 then angle between vec a and -2vec b is: