Home
Class 12
MATHS
The distance between the lines x=1-4t,...

The distance between the lines
`x=1-4t, y=2+t, z=3+2t" and "x=1+s, y=4-2s, z=-1+s` is

A

8

B

`16//sqrt(90)`

C

`8//sqrt(5)`

D

`16//sqrt(110)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between the two lines given by the equations: 1. \( x = 1 - 4t, y = 2 + t, z = 3 + 2t \) 2. \( x = 1 + s, y = 4 - 2s, z = -1 + s \) we will follow these steps: ### Step 1: Write the lines in vector form The first line can be expressed in vector form as: \[ \mathbf{r_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix} \] where \( \mathbf{a_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \) and \( \mathbf{b_1} = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix} \). The second line can be expressed as: \[ \mathbf{r_2} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \] where \( \mathbf{a_2} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} \) and \( \mathbf{b_2} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \). ### Step 2: Find the vector \( \mathbf{a_2} - \mathbf{a_1} \) Calculate \( \mathbf{a_2} - \mathbf{a_1} \): \[ \mathbf{a_2} - \mathbf{a_1} = \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} \] ### Step 3: Compute the cross product \( \mathbf{b_1} \times \mathbf{b_2} \) Calculate the cross product: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -4 & 1 & 2 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \left( 1 \cdot 1 - 2 \cdot (-2) \right) - \mathbf{j} \left( -4 \cdot 1 - 2 \cdot 1 \right) + \mathbf{k} \left( -4 \cdot (-2) - 1 \cdot 1 \right) \] \[ = \mathbf{i} (1 + 4) - \mathbf{j} (-4 - 2) + \mathbf{k} (8 - 1) \] \[ = 5\mathbf{i} + 6\mathbf{j} + 7\mathbf{k} \] ### Step 4: Find the magnitude of \( \mathbf{b_1} \times \mathbf{b_2} \) Calculate the magnitude: \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{5^2 + 6^2 + 7^2} = \sqrt{25 + 36 + 49} = \sqrt{110} \] ### Step 5: Calculate the distance using the formula The distance \( d \) between the two lines is given by: \[ d = \frac{|\mathbf{a_2} - \mathbf{a_1} \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] First, compute the dot product: \[ \mathbf{a_2} - \mathbf{a_1} = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} \] \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix} \] Calculating the dot product: \[ (0, 2, -4) \cdot (5, 6, 7) = 0 \cdot 5 + 2 \cdot 6 + (-4) \cdot 7 = 0 + 12 - 28 = -16 \] Taking the absolute value: \[ |\mathbf{a_2} - \mathbf{a_1} \cdot (\mathbf{b_1} \times \mathbf{b_2})| = 16 \] Now substituting into the distance formula: \[ d = \frac{16}{\sqrt{110}} \] ### Final Answer Thus, the distance between the two lines is: \[ d = \frac{16}{\sqrt{110}} \approx 1.52 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The distance between (5, 1, 3) and the line x = 3, y = 7 + t, z = 1 + t is

The shortest distance between the lines 2x+y+z-1=0=3x+y+2z-2 and x=y=z, is

STATEMENT-1 : The shortest distance between the skew lines (x+3)/-4=(y-6)/3=\z/2 and (x+2)/-4=y/1=(z-7)/1 is 9. and STATEMENT-2 : Two lines are skew lines if there doesn't exist a plane passing through them.

The distance between the line x=2+t,y=1+t,z=-1/2-t/2 and the plane vecr.(hati+2hatj+6hatk)=10 , is

The distance between the line (x-2)/(1)=(y-3)/(1)=(z-4)/(5) and the plane 2x+3y-z+5=0 is

The angle between the lines (x+4)/1=(y-3)/2=(z+2)/3 and x/3=(y-1)/(-2)=z/1 is

Find the distance between the parallel lines (x)/(2) =(y)/(-1) =(z)/(2) and (x-1)/(2) = (y-1)/(-1) = (z-3)/(2) .

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Level-2 Single Correct Answer Type Questions)
  1. If ( a times b)*(c times d)=(a*c)(b*d)+k(a.d)(b.c) then the value of k...

    Text Solution

    |

  2. The distance between (5, 1, 3) and the line x = 3, y = 7 + t, z = 1 + ...

    Text Solution

    |

  3. The distance between the lines x=1-4t, y=2+t, z=3+2t" and "x=1+s, y=...

    Text Solution

    |

  4. The vertices of a triangle ABC are A (1,-2, 2), B (1, 4, 0) and C (-4...

    Text Solution

    |

  5. If a, b, c, are non-coplanar vectors such that (2h+k)a+(3-4h+l)b+(1+h+...

    Text Solution

    |

  6. Show that the angle between two diagonals of a cube is cos^(-1)sqrt(1/...

    Text Solution

    |

  7. The point of intersection of the lines r times a=b times a, r times b=...

    Text Solution

    |

  8. If a=a(1)i+a(2)j+a(3)k, b=b(1)i+b(2)j+b(3)k, c=c(1)i+c(2)j+c(3)k, d=d(...

    Text Solution

    |

  9. The value of (b times c)*(a times d)+(c times a)*(b times d)+(a times ...

    Text Solution

    |

  10. The lines r=b-2c+lambda(a+b)" and "r=2b-c+mu(b+c) intersect at the poi...

    Text Solution

    |

  11. If a=i+2j-3k, b=2i+j-k then the vector v satisfying a times v=a times ...

    Text Solution

    |

  12. The value of abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+a...

    Text Solution

    |

  13. The locus of a point equidistant from two points with position vectors...

    Text Solution

    |

  14. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  15. If a times b=c" and "b times c=a, then

    Text Solution

    |

  16. Let OABC be a regular tetrahedron, then angle between edges OA and BC ...

    Text Solution

    |

  17. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  18. The vector vec a has the components 2p and 1 w.r.t. a rectangular ...

    Text Solution

    |

  19. a*((b times c) times (a+(b times c)) is equal to

    Text Solution

    |

  20. If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(...

    Text Solution

    |