Home
Class 12
MATHS
The value of abs(a times(i timesj))^(2...

The value of
`abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+abs(a times(k times i))^(2)` is

A

`abs(a)^(2)`

B

`2abs(a)^(2)`

C

`3abs(a)^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ | \mathbf{a} \times (\mathbf{i} \times \mathbf{j}) |^2 + | \mathbf{a} \times (\mathbf{j} \times \mathbf{k}) |^2 + | \mathbf{a} \times (\mathbf{k} \times \mathbf{i}) |^2 \] Let’s denote the vector \(\mathbf{a}\) as: \[ \mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k} \] ### Step 1: Calculate \(\mathbf{i} \times \mathbf{j}\) Using the right-hand rule for cross products: \[ \mathbf{i} \times \mathbf{j} = \mathbf{k} \] ### Step 2: Calculate \(\mathbf{a} \times (\mathbf{i} \times \mathbf{j})\) Substituting the result from Step 1: \[ \mathbf{a} \times \mathbf{k} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{k} \] Using the properties of cross products: \[ = a_x (\mathbf{i} \times \mathbf{k}) + a_y (\mathbf{j} \times \mathbf{k}) + a_z (\mathbf{k} \times \mathbf{k}) \] Calculating each term: - \(\mathbf{i} \times \mathbf{k} = -\mathbf{j}\) - \(\mathbf{j} \times \mathbf{k} = \mathbf{i}\) - \(\mathbf{k} \times \mathbf{k} = \mathbf{0}\) Thus, we have: \[ \mathbf{a} \times \mathbf{k} = a_x (-\mathbf{j}) + a_y \mathbf{i} + 0 = a_y \mathbf{i} - a_x \mathbf{j} \] ### Step 3: Calculate the magnitude squared Now, we find the magnitude squared: \[ | \mathbf{a} \times (\mathbf{i} \times \mathbf{j}) |^2 = | a_y \mathbf{i} - a_x \mathbf{j} |^2 = a_y^2 + a_x^2 \] ### Step 4: Calculate \(\mathbf{j} \times \mathbf{k}\) Using the right-hand rule: \[ \mathbf{j} \times \mathbf{k} = \mathbf{i} \] ### Step 5: Calculate \(\mathbf{a} \times (\mathbf{j} \times \mathbf{k})\) Substituting the result from Step 4: \[ \mathbf{a} \times \mathbf{i} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{i} \] Calculating each term: - \(\mathbf{j} \times \mathbf{i} = -\mathbf{k}\) - \(\mathbf{k} \times \mathbf{i} = \mathbf{j}\) Thus, we have: \[ \mathbf{a} \times \mathbf{i} = a_y (-\mathbf{k}) + a_z \mathbf{j} + 0 = a_z \mathbf{j} - a_y \mathbf{k} \] ### Step 6: Calculate the magnitude squared Now, we find the magnitude squared: \[ | \mathbf{a} \times (\mathbf{j} \times \mathbf{k}) |^2 = | a_z \mathbf{j} - a_y \mathbf{k} |^2 = a_z^2 + a_y^2 \] ### Step 7: Calculate \(\mathbf{k} \times \mathbf{i}\) Using the right-hand rule: \[ \mathbf{k} \times \mathbf{i} = -\mathbf{j} \] ### Step 8: Calculate \(\mathbf{a} \times (\mathbf{k} \times \mathbf{i})\) Substituting the result from Step 7: \[ \mathbf{a} \times (-\mathbf{j}) = - (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{j} \] Calculating each term: - \(\mathbf{i} \times \mathbf{j} = \mathbf{k}\) - \(\mathbf{j} \times \mathbf{j} = \mathbf{0}\) - \(\mathbf{k} \times \mathbf{j} = -\mathbf{i}\) Thus, we have: \[ \mathbf{a} \times (-\mathbf{j}) = - a_x \mathbf{k} + 0 + a_z \mathbf{i} = a_z \mathbf{i} - a_x \mathbf{k} \] ### Step 9: Calculate the magnitude squared Now, we find the magnitude squared: \[ | \mathbf{a} \times (\mathbf{k} \times \mathbf{i}) |^2 = | a_z \mathbf{i} - a_x \mathbf{k} |^2 = a_z^2 + a_x^2 \] ### Step 10: Combine all results Now we can combine all the results: \[ | \mathbf{a} \times (\mathbf{i} \times \mathbf{j}) |^2 + | \mathbf{a} \times (\mathbf{j} \times \mathbf{k}) |^2 + | \mathbf{a} \times (\mathbf{k} \times \mathbf{i}) |^2 \] Substituting the values we calculated: \[ = (a_y^2 + a_x^2) + (a_z^2 + a_y^2) + (a_z^2 + a_x^2) \] Combining like terms: \[ = 2(a_x^2 + a_y^2 + a_z^2) \] ### Final Result Thus, the final value is: \[ = 2 |\mathbf{a}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The value of abs(a times i)^(2)+abs(a times j)^(2)+abs(a times k)^(2) is

ixx(a times i)+j times(a times j)+k times(a times k) is always equal to

If bar(a) is any vector the value of hat i times(bar(a)times hat i)+hat j times(bar(a)times hat j)+hat k times(bar(a)times hat k)=

The vector ((i-j) times (j-k)) times (i+5k) is equal to

The vector [(i-j+k) times (2i-3j-k)] times [(-3i+j+k) times (2j+k)] is given by

Let a-i+j and b=2i-k .The point of intersection of the lines r times a=b times a and r times b=a times b is

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

If abs(a)=2, abs(b)=5" and "abs(a times b)=8" then "abs(a*b) is equal to

Find the value of ( i^2 + 1 ) times ( i^2 + 2 ) times ( i^2 + 3 ) ------ ( i^2 + n )

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Level-2 Single Correct Answer Type Questions)
  1. The point of intersection of the lines r times a=b times a, r times b=...

    Text Solution

    |

  2. If a=a(1)i+a(2)j+a(3)k, b=b(1)i+b(2)j+b(3)k, c=c(1)i+c(2)j+c(3)k, d=d(...

    Text Solution

    |

  3. The value of (b times c)*(a times d)+(c times a)*(b times d)+(a times ...

    Text Solution

    |

  4. The lines r=b-2c+lambda(a+b)" and "r=2b-c+mu(b+c) intersect at the poi...

    Text Solution

    |

  5. If a=i+2j-3k, b=2i+j-k then the vector v satisfying a times v=a times ...

    Text Solution

    |

  6. The value of abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+a...

    Text Solution

    |

  7. The locus of a point equidistant from two points with position vectors...

    Text Solution

    |

  8. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  9. If a times b=c" and "b times c=a, then

    Text Solution

    |

  10. Let OABC be a regular tetrahedron, then angle between edges OA and BC ...

    Text Solution

    |

  11. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  12. The vector vec a has the components 2p and 1 w.r.t. a rectangular ...

    Text Solution

    |

  13. a*((b times c) times (a+(b times c)) is equal to

    Text Solution

    |

  14. If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(...

    Text Solution

    |

  15. Given the vectors a=3i-j+5k" and "b=i+2j-3k. A vector c which is perp...

    Text Solution

    |

  16. The unit vector in XOZ plane and making angles 45^@ and 60^@ respectiv...

    Text Solution

    |

  17. If vector vec a+ vec b bisects the angle between vec a and vec b , ...

    Text Solution

    |

  18. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  19. A B C D is quadrilateral such that vec A B= vec b , vec A D= vec d , ...

    Text Solution

    |

  20. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |